Measuring the accuracy of time series reduction methods based on modified dynamic time warping distance calculations
DOI:
https://doi.org/10.6977/IJoSI.202504_9(2).0006Keywords:
Dimensionality, Distance, Dynamic Time Warping, Gaussian Kernel, Time SeriesAbstract
Representation of sensor data in the form of time series is a crucial aspect of numerous related tasks such as comparison, reduction, clustering, and classification. Time series representation methods included in most programming languages/integrated development environments support dimensionality reduction, data preprocessing, and feature extraction for time series data, as do several normalization techniques. This research study focused on 14 different methods of dimensionality reduction from the TSepr (R Studio) package on eight different time series, which are collections of sensor data of varying lengths. The similarity of the reduced time series and the original time series is compared using a modified version of dynamic time warping with time alignment measurement. These methods are further combined with the Gaussian kernel function to normalize the distance between variously aligned series. The results showed that perceptually important points (PIP) and piecewise linear approximation (PLA) were found as the best methods for TS reduction with a minimum deviation (error term) as low as 5 – 12%. The results also indicate that PIP performs significantly differently compared to seasonal decomposition, while there are no significant differences between PIP and the other methods (PLA, FEACLIPTREND, and FEACLIP). In addition, this research study demonstrated the development of an interactive web-based application in which time series are stored in csv files, and the distance between them is calculated through the chosen reduction method.
Downloads
Published
Issue
Section
License
Copyright in a work is a bundle of rights. IJoSI's, copyright covers what may be done with the work in terms of making copies, making derivative works, abstracting parts of it for citation or quotation elsewhere and so on. IJoSI requires authors to sign over rights when their article is ready for publication so that the publisher from then on owns the work. Until that point, all rights belong to the creator(s) of the work. The format of IJoSI copy right form can be found at the IJoSI web site.The issues of International Journal of Systematic Innovation (IJoSI) are published in electronic format and in print. Our website, journal papers, and manuscripts etc. are stored on one server. Readers can have free online access to our journal papers. Authors transfer copyright to the publisher as part of a journal publishing agreement, but have the right to:
1. Share their article for personal use, internal institutional use and scholarly sharing purposes, with a DOI link to the version of record on our server.
2. Retain patent, trademark and other intellectual property rights (including research data).
3. Proper attribution and credit for the published work.