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Abstract 

Contrast enhancement is a crucial preprocessing method for enhancing the efficiency of subsequent image processing 

and computer vision tasks. In the past, a lot of effort has been put into improving the visual scenes of pictures taken 

in low light. Images taken in poor illumination environments frequently reveal issues like color distortion, noise, low 

brightness, etc., that negatively impact the visual influence on human eyes. Therefore, an approach for improving 

poorly illuminated images based on wavelet transform is suggested to get around this problem. The input image is 

first transformed to Kekre's LUV color space, after which discrete wavelet transform (DWT) is applied to part each 

channel into low and high-frequency components. As the illumination is concentrated on the low-frequency image 

component, the Exposure-based Sub Image Histogram Equalization (ESIHE) technique is applied to enhance the im-

age's lighting. Besides, limited adaptive histogram equalization (CLAHE) is imposed to control the over-enhancement 

of specific region's contrast. Modified L, U, and V components are recovered via the inverse discrete wavelet trans-

form (IDWT), and the image is again converted into RGB space. This output is fused with a histogram equalized 

image using weighted fusion followed by a high boost filter to get the final enhanced output. Experimental outcomes 

are achieved to validate the efficacy and robustness of the suggested strategy using quality evaluators such as Entropy, 

NIQE, and BRISQUE rankings explored on ExDark, DPED, and LoLi datasets 

Keywords: Contrast enhancement, Histogram equalization, LUV Color space, Discrete wavelet transform, Inverse 

wavelet transform, Image naturalness. 

1. Introduction 

Digital images are crucial in practical uses like 

satellite television, MRIs, computer tomography, and 

scientific and technological fields like astronomy and 

geographic information systems. Scientists have strug-

gled to reconstruct the original image contents from 

disturbing and noisy images in these various disci-

plines. The goal of image enhancement is to make it 

easier for viewers to understand the information con-

tained in images. 

When an image's contrast is too low, it creates 

difficulty in viewing its finer features because of une-

ven or insufficient lighting. To achieve enhanced re-

sults, local and global variation consistent with the 

original intensity as a part of "naturalness preserva-

tion" is strived. Researchers have suggested various 

enhancing techniques to improve the visual appeal of 

these images or achieve high-visibility effects. Figure 

1 shows a sample specimen of low-light images from 

different datasets. 

Histogram equalization (HE), a statistics-based 

approach, is one of many pixel modulation schemes 

that directly alter the image's pixel intensity for im-

provement. Artifacts and a lack of naturalness could 

result from this kind of approach. 

However, the settings require manual construc-

tion with past understanding, and the spatial infor-

mation is not considered while acting on each pixel. 

The non-linear gamma correction approach greatly 

performs in challenging light circumstances due to the 

extensive usage of mapping curves. More inner data of 

the picture may be acquired with the aid of changing 

pixel data to different domain names using strategies 

like discrete Fourier 
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Sample specimen from ExDark Dataset 

    
Sample specimen from LoLi Dataset 

    
Sample specimen from DPED Dataset 

transform (DFT), discrete cosine transform (DCT), 

and discrete wavelet transform (DWT). These solutions, 

which may damage potentially helpful visual cues, com-

bine spatial reconstruction techniques like homomor-

phic filtering with frequency-domain filters to produce 

such effects. 

An enhancement method produces an image of 

higher quality for a specific use, and it can do this by 

reducing noise or boosting visual contrast. Noise typi-

cally taints the data sets that image sensors collect. The 

relevant data quality may be lowered by unreliable 

equipment, issues with the data collection procedure, 

and interfering natural events. Distortions can occur in a 

variety of ways. One of the most frequent instances is 

distortion brought on by additive white Gaussian noise, 

subpar image collection, or sending the image data 

through noisy communication channels. Impulse and 

speckle noises are two additional categories of noise. 

Additionally, compression and transmission faults 

also have the potential to cause noise. Thus, denoising is 

frequently an essential initial step before evaluating the 

picture data. An effective denoising technique must be 

used to compensate for such data distortion. Because 

noise reduction generates artifacts and blurs images, im-

age denoising is still difficult for researchers. An old but 

current industrial issue is the denoising of electronically 

distorted images. 

The two main ways to denoise images are spatial 

and transform domain filtering methods. The idea be-

hind spatial filters is that noise is present in the higher 

frequency spectrum; hence they apply a low pass filter 

to groups of pixels. Spatial low-pass filters blur edges in 

signals and images while smoothing away noise, in con-

trast to high-pass filters, which can sharpen edges and 

boost spatial resolution while magnifying the noisy 

background. 

The spatial domain approach directly works on pix-

els, but the transform domain method first performs an 

image's Fourier transform before returning it to the spa-

tial domain. Pixel values can be changed using the spa-

tial domain method. A new type of signal analysis, 

wavelet analysis, is much more effective than Fourier 

analysis when the signal has temporal behavior or dis-

continuities. Wavelet transforms have been extensively 

studied for additive noise reduction of signals and im-

ages. A scale-based decomposition is provided using the 

wavelet transform. 

Wavelet transforms of images often consist of a 

limited number of large coefficients and many small co-

efficients. As a result, there are two probability states for 

each wavelet coefficient: significant and insignificant. 

Convolution and lifting scheme methods are used to im-

plement the discrete wavelet transform (DWT) for dis-

crete-time signals. The fundamental process involves 

downsampling the outputs by a factor of two after ap-

plying low and high pass filters. 
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When the outcome of the low pass channel is sub-

jected to the same decomposition, a two-level wavelet 

transform results; this method is repeated in a dyadic 

way to produce a multilevel decomposition. The lifting 

scheme is a more effective wavelet transform technique 

than the convolution approach of the wavelet 

transform. The lifting technique can be applied be-

forehand to enhance or denoise the image and can also 

be applied in reverse to bring back the original image. 

This paper is composed of six sections. The existing re-

search on enhancing low-light contrast in dark images is 

found in Section 2. In Section 3, the recommended Con-

trast Enhancement method is shown. Section 4 evalu-

ated the suggested method using the ExDark, DPED, 

and LoLi datasets, which distorts the findings. Section 5 

summarizes the whole work, while section 6 focuses on 

its constraints and potential scope. 

2. Literature survey 

This section reviews the state-of-the-art techniques 

for enhancing the quality of degraded images. A few ef-

forts to improve image detail have been published. Mul-

tiple input images were acquired under varying lighting 

conditions, and researchers devised various algorithms 

using different color spaces in spatial and transform do-

mains. 

The technique known as "Histogram Equalization" 

(HE) is often used to enhance image contrast within a 

spatial domain set (Gonzalez & Woods, 2002). This ap-

proach has a condensed build time and is flexible to use. 

The histogram equalization process locates the pixel in-

tensities that recur the most frequently and distributes 

them evenly throughout the image. HE is a particularly 

helpful technique for spreading intensities uniformly 

across the entire image because images in the dark have 

bright and dark regions. This method's drawback is that 

the output that has been equalized could contain overly 

bright areas. Two modified versions of the HE approach 

have been created in response to this restriction: "Adap-

tive HE" (AHE) (Pizer & Amburn, 1987), and "Contrast 

Limited Adaptive HE" (CLAHE) (Mhan & Simon, 

2020). The mentioned techniques aim to improve results 

by working on multiple regions with diverse histograms 

applied to less illuminated photos. 

There are numerous methods for figuring out the 

clipping threshold values in these procedures. "Expo-

sure-based Sub-Image HE" (ESIHE) divides images into 

sub-images with different intensities and is used to in-

crease output effectiveness (Singh & Kapoor, 2014). Re-

cently, another approach to enhancing and balancing the 

brightness of dark images is using Kekre's LUV color 

space that enhances the brightness of the input image 

and blends it with the output of HE (Pardhi & Thepade, 

2020). The non-uniformly lighted image was split into 

five sub-images, and a modified method was introduced 

by giving each histogram's cumulative density function 

a nonlinear weight correction. The result is a modified 

intensity mapping for overexposed and underexposed 

(Hidayah & Ashidi, 2021). Another idea is to use quick 

local Laplacian filtering that enhances only the local de-

tails of the bright and dark regions (FLLF). First, the av-

erage brightness for each place is calculated to estimate 

the region of enhancement (RoE) of every image in the 

bright and dark parts. The authors employed a multireso-

lution technique to create the fused image for pixels in 

the RoE, extracting the darkest or brightest details using 

the modified faster local Laplacian filtering as the detail 

extraction mechanism (Wang & He, 2021).  

Many authors offer an alternative approach to his-

tograms grounded on the Retinex hypothesis. The algo-

rithms assume the reflection to be a modified outcome 

by eliminating and estimating the illumination. Using a 

Gaussian filter, Single Scale Retinex (SSR) (Jobson & 

Rehman, 1997), Multiscale Retinex (MSR) (Jobson & 

Rehman, 1997) split reflection and illumination. The 

lack of lighting improves brightness and detail, but a 

center/perimeter approach may overemphasize the re-

ported results. MSRCR negates the shortcomings men-

tioned above. Adaptive Retinex-based technology mini-

mizes halo artifacts by applying adaptive filters to the 

luminance channels (Meylan & Susstrunk, 2006). As 

recommended, Multiscale Retinex can also be used in 

OLED displays that give the right gain for good visibil-

ity and save power without flickering artifacts (Yeon, 

2006). Another technology focuses on image quality 

with complex atmospheres. Here, to advance the image 

quality of photographs, MSR is applied in consideration 

of image quality learning (Liu & Lu, 2017). A Retinex-

based high-speed algorithm (RBFA) has been intro-

duced to restore low-brightness, suppressed content. 

Here, the original dark 

image is changed to a space with a different hue-

saturation intensity. This intensity component is 

stretched using a linear function of dynamic range (Liu, 

2021). Recently, a new method that combines color 
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restoration and denoising has been proposed. Here, 

paired pictures are subjected to modified Retinex-de-

composition to produce reflectance and illumination 

maps. This prevents the use of flexible joint function 

over smoothing (Yu & Li, 2022). 

To improve the brightness of dark photographs, the 

author used an automatic gamma correction method 

with luminance pixel probability scattering. To reduce 

processing complexity, these algorithms use temporary 

information about the differences between each frame to 

correct dark images (Huang & Cheng, 2013). By sepa-

rating the luminance components of the YCbCr color 

space, a new method of dynamic range adjustment 

(AMIDRA) and less illuminated image enhancement 

has been established (Yang & Li, 2018). A new tech-

nique called Adaptive Image Enhancement (AIEM) 

(Wang & Chen, 2019) corrects low-light images by con-

verting RGB images into HSV space and uses Weber-

Fechner's law to build intensity components. Based on 

the distribution profile of the lighting component, the 

adaptive adjustment for enhancement produces two im-

ages. Finally, merging the two images will improve the 

resulting image. Recently, adaptive gamma correction 

has been used with Retinex theory. Training sets estab-

lish an association between image exposure and features 

under maximum entropy generation (Yu, 2021). A new 

improvement algorithm was recently presented that can 

improve photos close to the boundary of separation and 

images well within the barrier. Utilizing nonlinear 

weight modifications, the algorithm's fundamental con-

cept is integrating several AGC-enhancing functions. 

Using these weight adjustments, both contrast and 

brightness have been changed (Sengupta & Biswas, 

2021). 

As proposed by (Demirel & Anbarjafari, 2008) and 

(Demirel & Anbarjafari, 2010), some frequency domain 

approaches for enhancing low-contrast images are non-

uniform contrast and medium range based on the scaling 

of individual values. Ideal for bright images. Compared 

to previous approaches, the methods are (Atta & Ghan-

bari, 2013) and (Atta & Abdel-Kader, 2015), which im-

prove the performance of photos in the medium bright-

ness range). Another approach to improving dark im-

ages by the combination of CLAHE-DWT. To accentu-

ate the low-frequency coefficients and reduce the noise 

amplification without affecting the high-frequency coef-

ficients, the original image is first divided into low and 

high-frequency components by DWT. This is so since 

the high-frequency components comprise the majority 

of noise in the original image. Finally, get the inverse 

DWT of new coefficients and reconstruct the image. To 

avoid over-amplification, the average of the original re-

constructed image is used from the originally proposed 

weighting factor (Lidong & Wei, 2015). In current years, 

new tactics have been introduced that change the wave-

let transform. In this approach, a fuzzy dot matrix and a 

planar feature matrix are constructed, new values for the 

gradient mean and image quality index are calculated, 

and the original image is (Qing & Feng, 2021). 

Several techniques based on the fusion process 

have been presented to improve low-contrast photog-

raphy. A procedure was introduced to create many pho-

tos at different exposures by mapping the intensity func-

tion to the input image (Lim & Park, 2006). Combining 

domain-specific information with a hybrid image en-

hancement approach produces more detailed, low-noise 

images. Improve medical images using frequency and 

spatial domain techniques (Muslim & Khan, 2019). Es-

tablishing stability between contrast and brightness us-

ing image fusion optimized for cuckoo search is a more 

advanced technique in this area. Authors first apply a 

Cuckoo search-based optimization approach to develop 

an improved photo duo to generate two sets of ideal pa-

rameters. The first set has high contrast and sharpness, 

and the second is bright and detailed without affecting 

sharpness. The fusion method combines the two im-

proved images to produce a balanced contrast and 

brightness output (Lalit & Viney, 2021). In the most re-

cent method of improvement, the histogram is divided 

into three sub-parts, indicating the dark, grey, and bril-

liant sections of the histogram according to the homoge-

neity value. Then, local changes in each sub-section are 

done using 2D geometric scaling and adaptive gamma. 

The 2D translation technique is used to join these altered 

sub-sections once more. On the other hand, the entire 

histogram is given a global gamma transformation. The 

finishing transformation matrix is then created by inte-

grating the local-global transformations that have al-

ready been computed (Sarkar & Halder, 2021). 

The need to introduce the proposed method is be-

cause of the following limitations of the methods dis-

cussed so far are listed below 

 

1. Occurrence of noise and color distortion in an im-

age (Wang & He, 2021) 

2. Under enhancement of image in the dark region 

(Yang & Li, 2018) 
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3. Loss of details at the edges of an image (Atta & 

Abdel-Kader, 2015) 

4. brightness in some regions where street lights or 

bright sources are present (Lalit & Viney, 2021) 

To overcome the above drawbacks from the exist-

ing method, the proposed method is founded on the fol-

lowing key contributions 

- Use of Kekre's LUV color space as it improves 

the quality of recreated colored output image and mini-

mizes color distortion  

  

Figure 2. Flow chart of Proposed Method 
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- Combination of linear weights for recovered RGB 

image and histogram equalized image to balance the 

brightness in the resultant image  

- To control the over-brightness, exposure and con-

trast limited techniques are applied on low-frequency 

components after decomposition by DWT 

3. Methodology and Scope 

In this part, a technique for enhancing non-uniform il-

lumination photos to boost their quality

 
Figure 3. DWT and IDWT Flow diagrams 

 

 

is provided. Figure 2 depicts the proposed technique's 

framework and is explained in five sections. The first 

section details the conversion of RGB to Kekre's LUV 

color space & vice versa. The discrete wavelet transform 

and the inverted discrete wavelet transform are applied 

to the image, as explained in Section 2. Low light image 

enhancement algorithms used here, i.e., CLAHE & 

ESIHE, are enlightened in sections 3 and 4, respectively. 

The final part explains the weighted fusion to get en-

hanced output. 

3.1 RGB to Kekre LUV Conversion 

Initially, the low light RGB image is transformed 

into Kekre's LUV space. The vice versa transformation 

is as shown in equations 1 and 2. The poorly conditioned 

image is initially changed into luminance-chromaticity 

space. The following RGB to LUV conversion matrix 

shows a color image's L, U, and V components com-

puted on corresponding R, G, and B components.  

[
𝑳
𝑼
𝑽
] = [

𝟏 𝟏 𝟏
−𝟐 𝟏 𝟏
𝟎 −𝟏 𝟏

] ⌈
𝑅
𝐺
𝐵
⌉      (1) 

The reverse can be achieved by the LUV to RGB 

conversion matrix as equation 2 

[
𝑹
𝑮
𝑩
] = [

𝟏 −𝟐 𝟎
𝟏 𝟏 −𝟏
𝟏 𝟏 𝟏

] ⌈
𝐿
𝑈
𝑉
⌉      (2) 

3.2 DWT & IDWT 

L, U, and V components obtained as an output from 

equation 1 undergo wavelet transformation as shown in 

figure 3, to decompose into low and high-frequency co-

efficients. When two-dimensional denoising signals, 

such as images and wavelets, are frequently used, select-

ing a wavelet type and level N of decomposition is the 

initial step. Here, decomposition is accomplished using 

the Haar wavelet. The two-dimensional image is trans-

formed into wavelets using these wavelets. Determining 

threshold values for each level from 1 to N comes after 

the image file has been broken down. Reconstructing the 

image from the updated levels is the last stage, where an 

inverse wavelet transform is used, as shown in Figure 3.  

3.3 ESIHE 

The exposure-based sub-image histogram equali-

zation method is used to improve the decomposed low-

frequency component, as is explained in this section. 

The whole dynamic range is not used in photos with 

poor contrast. Images with low-intensity exposure have 

histogram bins concentrated toward the darker grey lev-

els, whereas those with high-intensity exposure have 

histogram bins concentrated toward the brighter part. 

The categories of underexposed and overexposed photos 

can be broadly categorized based on this intensity expo-

sure. 

The ESIHE algorithm is displayed here. Three 
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steps comprise the algorithm: choosing the exposure 

threshold, clipping the histogram, and subdivision and 

equalization. The following subsection detailed each 

step 

Step 1: Calculate the image's histogram ℎ(𝑘). 

Step 2: Calculate exposure and threshold parameter 

𝑋𝑎 

          𝑒𝑥𝑝 =
1

𝐿
 
∑ ℎ(𝑘)𝑘𝐿

𝑘−1

∑ ℎ(𝑘)𝐿
𝑘−1

             (3) 

Here L represents the total amount of grey levels, 

and the histogram is denoted by ℎ(𝑘) 

The exposure-related parameter 𝑋𝑎  provides the 

grey level value of the barrier that acts as a separator to 

divide the image into underexposed and overexposed 

sub-images. 

      𝑋𝑎 = 𝐿(1 − 𝑒𝑥𝑝)            (4)                     

Depending on whether the exposure value is less 

than or more than 0.5 for a picture with a dynamic range 

of 0 to L, this parameter can reach values higher or less 

than L/2 (grey level). 

Step 3: Computation of the clipping threshold 𝑇𝑐 

and clip ℎ𝑐(𝑘), the histogram  

           𝑇𝑐 =
1

𝐿
∑ ℎ(𝑘)𝐿

𝑘=1                  (5) 

For ℎ(𝑘) ≥ 𝑇𝑐            ℎ𝑐(𝑘) = 𝑇𝑐 

where ℎ(𝑘) and  ℎ𝑐(𝑘)  indicate the original and 

clipped histogram, respectively. 

Step 4: Utilizing the threshold setting 𝑋𝑎, split the 

clipped histogram into two sub-parts to obtain the un-

derexposed and overexposed regions. 

Step 5: Individual sub-histograms should be sub-

jected to histogram equalization. 

Step 6: Combination of these sub-parts in a single 

image for analysis. 

Compared to other approaches, the ESIHE method 

produces images with excellent contrast enhancement 

and control over over-enhancing, making it a viable al-

ternative for under-exposed images. 

3.4 CLAHE 

The output of the previous step is again equalized 

using CLAHE, which improves the local details. The 

implementation of CLAHE is given in the following 

steps 

Step 1: Separates the original intensity image into 

contextual parts that don't overlap. MxN is the same as 

the total number of image tiles. 

Step 2: Histogram of every region calculated using 

the current grey levels. 

Step 3: computation of the limited contrast histo-

gram (CL) value 

          𝑁𝐴𝑣𝑔 =
(𝑁𝑟𝑋∗ 𝑁𝑟𝑌)

𝑁𝑔𝑟𝑎𝑦
                  (6) 

Here 𝑁𝐴𝑣𝑔 stands for the average pixels, and 𝑁𝑔𝑟𝑎𝑦 

stands for the number of grey levels. The values repre-

sent the region's X and Y dimensions 𝑁𝑟𝑋 and 𝑁𝑟𝑌 re-

spectively. CL can then be calculated as              

      𝑁𝐶𝐿 = 𝑁𝑐𝑙𝑖𝑝 ∗  𝑁𝑎𝑣𝑔               (7) 

where 𝑁𝐶𝐿 stands for actual CL and 𝑁𝑐𝑙𝑖𝑝 stands for 

normalized CL occupying the range from 0 to 1. Pixels 

having higher intensity than 𝑁𝐶𝐿 is clipped, and the no-

tation shows the clipped pixels 𝑁𝑐𝑙𝑖𝑝 . Now, each grey 

level's average remaining pixel is calculated using the 

formula 

        𝑁𝑎𝑣𝑔𝑔𝑟𝑎𝑦 = 𝑁𝑐𝑙𝑖𝑝  / 𝑁𝑔𝑟𝑎𝑦           (8) 

Histogram clipping can be carried out according to 

certain conditions, such as (1) clipping to value CL for 

higher values than CL. (2) The pixel value equals CL 

again if pixel intensity + 𝑁𝑎𝑣𝑔𝑔𝑟𝑎𝑦   is larger compared 

to CL; again, the pixel value equals CL. (3) for the 

cropped histogram original intensity + CL value. 

Step 4: Redistribution of the leftover pixels throughout 

the intensity range 
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Step 5: New pixel assignments for grey levels should be 

calculated. 

Step 6:  The CLAHE (Y) output then undergoes 

color restoration steps as applied to gray images sug-

gested in (Abdullah & Kabir, 2007). 

After clipping the histogram portion above a 

threshold, the CLAHE algorithm reallocates the clipped 

pixels against every grey level. This procedure can 

somewhat reduce the noise enhancement problem. For 

some uses, the noise is still intolerable. Additionally, 

due to over-enhancing, it can lose some of the details in 

some areas of the supplied image. 

Modified low- and high-frequency components are 

subjected to the inverse wavelet transform. 

3.5 Wavelet Fusion 

Output from the above step is fused linearly with 

traditional histogram equalization having weights as 0.7 

and 0.3, respectively, as shown in equation 9, followed 

by a high boost algorithm to preserve edges in output 

enhanced image.  

𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑠𝑒𝑑 = 0.7 ∗  𝑂𝑢𝑡𝑝𝑢𝑡1 + 0.3 ∗  𝑂𝑢𝑡𝑝𝑢𝑡2     (9) 

In the equation above, a small weight is in m mul-

tiplication with the HE output to reduce the impact dis-

tortion in color. 

4. Result and Discussion 

The experimental outcomes of CLAHE, ESIHE, 

the existing method, and the proposed technique are 

elaborated in the current section. The experimentation is 

done on three separate datasets containing different low-

light photos. The ExDark, LoLi, and DPED datasets 

were used in this study. No-reference image quality 

 

 Evaluator (NIQE), and Blind/Reference Image Spatial 

Quality Evaluator (BRISQUE). Here the higher entropy 

score implies a better image quality. NIQE and 

BRISQUE are other no-reference image quality evalua-

tors. A lesser NIQE or BRISQUE score implies a better 

enhancement. 

 

 

 

 

 

Figure 4. (a) Original low light image from ExDark 

Dataset. Result of (b) CLAHE (Mohan & Simon, 2020) (c) 

ESIHE (Singh & Kapoor, 2014) (d) CLAHE-DWT (Lidong 

& Wei, 2015) (e) Proposed Method  

 
Figure 5. (a) Original low light image from LoLi Dataset. Re-
sult of (b) CLAHE (Mohan & Simon, 2020) (c) ESIHE (Singh 
& Kapoor, 2014) (d) CLAHE-DWT (Lidong & Wei, 2015) (e) 
Proposed Method 
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Figure 6. (a) Original low light image from DPED Dataset. 
Result of (b) CLAHE (Mohan & Simon, 2020) (c) ESIHE 

(Singh & Kapoor, 2014) (d) CLAHE-DWT (Lidong & Wei, 
2015) (e) Proposed Method 

The comparison results of low-light photos for var-

ious techniques are shown in Figures 4, 5, and 6. It im-

plies that the proposed method reduces over-enhancing 

and color distortion compared to earlier methods while 

significantly improving low-light image enhancement. 

Tables 1 through 9 quantitatively display findings from 

various methodologies. 

Tables 1, 2, and 3 highlight the average Entropy, 

NIQE, and BRISQUE scores of different dark images 

experimented with over the ExDark dataset. It is per-

ceived that the estimated method of enhancing poorly 

illuminated images using wavelet transform gives the 

highest score for Entropy, implying better enhancement 

results compared to other methods. Concerning the 

NIQE score, the suggested method ranked second high-

est after the existing method. The BRISQUE score is the 

lowest for the proposed method, indicating the best en-

hancement results.  

The experimental outcomes from tables 4, 5, and 6 

depict the evaluation of the LoLi dataset. Notably, the 

proposed algorithm achieves the highest scores among 

all methods evaluated by both Entropy and BRISQUE 

quality evaluators. These findings substantiate the effi-

cacy of the proposed algorithm in enhancing results, out-

performing existing methods significantly. 

Table 1. Average Entropy Score of ExDark Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Bicycle 5.9 5.3 5.6 6.5 

Boat 6.9 6.5 6.6 7.2 

Bottle 5.6 4.9 5.3 6.5 

Bus 5.7 5.0 5.5 6.6 

Car 5.1 4.5 4.8 6.2 

Cat 5.8 5.0 5.4 6.6 

Chair 5.2 4.6 5.0 6.2 

Cup 6.2 5.5 5.9 6.9 

Dog 5.6 4.9 5.3 6.5 

Motorbike 6.2 5.8 6.0 6.9 

People 4.7 4.3 4.6 5.5 

Table 5.6 5.0 5.3 6.7 

Average 5.7 5.1 5.4 6.5 
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Table 2. Average NIQE Score of ExDark Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Bicycle 5.4 5.5 5.0 5.0 

Boat 4.5 4.9 4.4 4.5 

Bottle 4.8 5.5 4.8 4.9 

Bus 4.8 5.1 4.7 4.8 

Car 5.1 5.7 5.2 5.4 

Cat 4.4 4.6 4.3 4.2 

Chair 5.7 6.5 5.5 5.8 

Cup 4.0 4.4 4.0 4.0 

Dog 4.8 5.2 4.8 4.8 

Motorbike 4.7 5.3 4.6 4.8 

People 5.3 5.5 5.1 5.1 

Table 5.1 6.1 5.2 5.9 

Average 4.9 5.3 4.8 4.9 

Table 3. Average BRISQUE Score of ExDark Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Bicycle 36.0 36.1 37.4 34.5 

Boat 27.2 32.2 30.9 28.4 

Bottle 39.0 42.5 41.0 30.6 

Bus 37.2 40.9 40.0 30.9 

Car 38.4 42.9 40.0 37.8 

Cat 39.5 42.4 41.4 33.4 

Chair 40.9 41.6 40.5 36.2 

Cup 39.2 43.1 42.2 31.7 

Dog 41.8 44.3 41.5 36.4 

Motorbike 37.1 33.7 36.0 29.9 

People 41.9 44.2 42.2 37.6 

Table 40.3 44.7 40.8 35.8 

Average 38.2 40.7 39.5 33.6 

Table 4. Average Entropy Score of LoLi Dataset 

Image 
CLAHE (Mohan & Si-

mon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Huawei 6.2 5.2 5.7 7.3 

LG 6.5 5.2 5.8 7.6 

Oneplus 5.2 4.1 4.6 7.3 

Oppo 7.3 6.4 6.7 7.6 

Pixel 7.6 6.9 7.1 7.7 

Vivo 6.2 5.1 5.6 7.3 

Xiaomi 5.8 4.4 5.1 7.2 

iPhone 6.4 5.6 5.9 7.3 

Average 6.4 5.4 5.8 7.4 
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Table 5. Average NIQE Score of LoLi Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Huawei 4.0 4.4 4.5 5.3 

LG 3.6 4.3 3.8 4.5 

Oneplus 8.4 9.7 8.4 9.2 

Oppo 3.5 3.8 3.4 4.9 

Pixel 3.1 3.0 2.9 3.7 

Vivo 4.9 5.4 5.0 6.6 

Xiaomi 4.5 5.7 5.1 6.3 

iPhone 3.9 4.1 4.0 4.9 

Average 4.5 5.1 4.6 5.7 

Table 6. Average BRISQUE Score of LoLi Dataset 

Image 
CLAHE (Mohan & Si-

mon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Huawei 37.4 39.9 41.7 31.7 

LG 36.8 41.0 41.8 38.1 

Oneplus 51.0 57.5 48.3 46.5 

Oppo 28.4 32.6 32.8 20.8 

Pixel 24.8 27.6 28.1 17.3 

Vivo 40.1 43.0 42.4 41.1 

Xiaomi 42.6 47.4 42.7 38.5 

iPhone 33.1 33.9 36.4 29.7 

Average 36.8 40.4 39.3 33.0 

 Table 7. Average Entropy Score of DPED Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & 

Kapoor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Blackberry 7.7 7.6 7.4 7.6 

Canon 7.5 7.3 7.1 7.5 

iPhone 7.6 7.1 7.0 7.6 

Sony 7.8 7.6 7.4 7.7 

Average 7.6 7.4 7.2 7.6 

Table 8. Average NIQE Score of DPED Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & Ka-

poor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Blackberry 4.0 3.4 3.6 5.0 

Canon 3.3 2.9 3.3 4.4 

iPhone 2.7 2.9 2.5 4.1 

Sony 3.5 3.0 3.1 4.5 

Average 3.4 3.0 3.1 4.5 
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Table 9. Average BRISQUE Score of DPED Dataset 

Image 
CLAHE (Mohan & 

Simon, 2020) 

ESIHE (Singh & 

Kapoor, 2014) 

CLAHE-DWT (Li-

dong & Wei, 2015) 
Proposed 

Blackberry 30.4 26.5 24.0 22.1 

Canon 21.2 27.5 28.5 22.3 

iPhone 21.1 28.6 26.4 19.0 

Sony 20.4 21.4 26.4 19.9 

Average 23.3 26.0 26.3 20.8 

 

 

Tables 7, 8, and 9 highlight the performance eval-

uation of techniques on the DPED dataset. Significantly, 

the recommended technique demonstrates impressive 

results, boasting high scores for Entropy while recording 

the lowest BRISQUE score among the experimented 

methods. This underscores the effectiveness of the rec-

ommended technique in optimizing results on the DPED 

dataset. 

By giving less weight to the HE output and more 

weight to the output of the proposed method, the over-

enhancement effect in output can be reduced to a mod-

erate level due to the linear fusion used in the proposed 

method. 

5. Conclusion 

It is crucial but challenging for photographs with 

poor lighting to improve the contrast and restore the de-

tails. Poor lighting circumstances and factors, including 

light absorption, reflection, bending, and scattering, re-

sult in dimness and distortion; such images may lose 

contrast and degrade. It's possible that the current algo-

rithms for picture enhancement can't effectively boost 

contrast and restore color for low-light photographs. As 

a result, this paper, the wavelet-based algorithm for en-

hanced fusion has five main steps: conversion of RGB 

to LUV color spaces, decomposition of each component 

using wavelet transform, applying ESIHE to get an ex-

posure-based enhancement of dark and bright regions 

separately, applying CLAHE to control over bright re-

gions, and weighted fusion with traditional HE method 

followed by edge preservation.  

The proposed algorithm can efficiently accomplish 

contrast enrichment based on experimentations per-

formed on various datasets having differently captured 

categories of poorly illuminated images against different 

evaluation parameters such as Entropy, NIQE, and 

BRISQUE. The method outperforms existing 

enhancement algorithms in visual performance and 

quantitative evaluation by giving a higher Entropy score 

and a lower BRISQUE score across three different da-

tasets. 

6. Limitations and future research 

With the experiments performed on different da-

tasets having a variety of low-light images, noise is ob-

served in a few patches, affecting the NIQE score. As a 

corrective measure, the proposed method can be added 

with a noise amplification feature compared to the re-

sults of diverse fusion methodologies and contrast en-

hancement metrics. Further, similarly, the findings 

would be tested by combining the output from other lo-

cal and global methods. Our goal is to construct a quan-

tifiable assessment of the effectiveness of contrast-en-

hancement algorithms based on various measures de-

scribed in the paper. 
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