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Abstract 

Forecasting the heights of marine waves is an important tool for offshore and coastal engineering and a huge un-

dertaking in marine detection and warning. However, a precise forecast of the Sea Wave Height (SWH) is chal-

lenging and outstanding to waves' volatility and fluctuation characteristics. Therefore, our research proposes an 

Intelligent Ocean Wave Height Prediction system using a light gradient boosting machine learning. Initially, this 

research extracts the wave speed, peak wave direction, zero up crossing wave period, wave period, and SWH, 

among the wave-based properties. Then, the retrieved data are fed into the proposed light GBM, which operates 

well with the high-dimensional data that makes our proposed approach easy to interpret. The proposed method can 

also be utilized to estimate wave height because light GBM performs with redundant data in time-window-size 

data and is noise-insensitive. Experimental results reveal that our light GBM significantly improves the accuracy 

of numerical predictions of ocean wave height. When compared to the baseline, our proposed approach achieves 

lower error than the Multilayer Perceptron Neural Network (MPNN), Cascade Correlation Neural Network 

(CCNN), General Regression Neural Network (GRNN), and Radial Basis Function Neural Network (RBFNN), 

with error rates of 5.01 %, 44.33 %, 6.22 %, and 2.23 %, respectively. As a result, our proposed technique has a 

lower MAPE of 2.21 % compared to baseline approaches. 

Keywords: Sea wave height, light GBM, Machine learning, Forecasting, Wave variables. 

1. Introduction 

Marine disasters represent a danger to many 

countries worldwide, resulting in massive deaths and 

economic damage. The growing growth of a variety 

of offshore businesses has piqued attention in the ef-

fective wave forecast characteristics [Hashim et al., 

(2016)] [1998]. High-energy ocean waves Significant 

Wave Height (SWH) can collapse ships and finish 

marine or seaside infrastructure. It endangers human 

lives, agriculture output, and the long-term viability 

of aquaculture goods. Wave height in sea forecasting 

is a difficult and significant issue in seaside and ma-

rine engineering due to waves' difficult and unpre-

dictable nature [Amin, (2013)].  It is essential to esti-

mate marine wave heights promptly and precisely in 

disaster warning and emergency prevention, as well 

as the development and renovation of seashore area 

construction, marine transportation, and environmen-

tal protection [Sabatier, (2007)].  As a result, accurate 

SWH forecasting is crucial since it can help reduce 

societal and business losses. 

Furthermore, Sea Wave Height forecasting can 

provide certain advantages. Altunkaynak & Wang, 

(2012) created a new approach for predicting SWH 

by combining a genetic algorithm with Kalman filter-

ing. These approaches reduced mean relative and 

mean square errors over ANN and demonstrated its 

superiority. Improved ship routes based on Sea Wave 

Height forecasts, for example, could skip stormy sea 

regions, reducing sailing time and fuel expenditures. 

Moreover, forecasting sea wave heights can give val-

uable information for the army and naval planning 

activities. Sea wave height forecasting systems have 

been developed for years due to their relevance and 

practical uses. Empirical and numeric form Sea Wave 

Height prediction algorithms had tremendous com-

prehensibility at the beginning, but low performance 

and generalization capability. Moreover, the authors 

[Nitsure et al., (2012)] used genetic programming to 

forecast wave heights based on wind data. Prediction 

findings with lead periods of up to 12 and 24 hours 
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were satisfactory, with coefficients of correlation be-

tween predicted and measured values greater than 

0.87.  

 

When predicting ocean wave heights, a variety 

of methodologies can be used. For meaningful wave 

height forecasting, experimental, mathematical, and 

soft computing methodologies have been described. 

Tidal variation, wind blowing in different directions, 

the depth and physical qualities of water are all exter-

nal elements that affect the wave's speed and height. 

In a numerical model that incorporates wave propa-

gation, these physical processes and interactions are 

represented as a different equation. To overcome the 

challenges in the wave propagation model, a power-

ful computational infrastructure is usually necessary. 

Prahlada & Deka, (2015) attempted to create a hybrid 

wavelet and artificial neural network model for SWH 

prediction beyond multistep lead time by utilizing the 

advantageous properties of both. The given strategy 

has been demonstrated to be both effective and prac-

ticable. This method requires creating a physical de-

sign of the tallness of a sea wave, which necessitates 

a thorough understanding of basic physical methods, 

as well as a significant financial investment and time 

commitment [Yoon et al., (2011)]. When an emer-

gency scenario occurs in the water, faster and more 

precise forecasting systems must be developed to es-

timate wave heights rapidly. For example, in [Deo et 

al., (2001)] the authors suggested a 3-layer feed-for-

ward network model that forecasts the heights of 

ocean waves in various seas and examines the char-

acteristics that impact ocean wave height prediction. 

The authors [Zamani et al., (2008), Malekmohamadi 

et al., (2011] investigated many data-driven designs 

based on Artificial neural networks (ANNs) and In-

stance-based learning in-depth (IBL). Experiments 

revealed that ANNs had a modest edge over the IBL 

in forecasting severe wave conditions, and ANNs 

also have a competitive advantage in predicting ex-

treme wave conditions. Mahjoobi & Etemad-Shahidi, 

(2008) using Support Vector Machines, developed a 

model for estimating the heights of ocean waves and, 

discovered that the Support Vector Machine valida-

tion loss is lower than the traditional neural network 

[Mahjoobi & Mosabbeb, (2009)], the effectiveness of 

arrangement and regression trees in predicting the 

heights of marine waves was explored. The forecast 

findings suggest that the decision tree can be utilized 

as an effective method with a reasonable error range. 

However, predicting wave heights based on infor-

mation about storm generation is essentially an indef-

inite and unpredictable method that is hard to repre-

sent using deterministic equations. Machine learning 

approaches employ statistics to understand better the 

spatial and temporal relationships buried in historical 

time series. It makes it a perfect option for a machine 

learning model. It focuses on detecting a probability 

plot in a set of input data and then applying the same 

strategy to forecast the desired attribute. This re-

search paper's primary feature is as follows:  

Traditional empirical or numerical-based fore-

casting models are used in existing research, but they 

have speed and accuracy constraints. Our research in-

troduces light Gradient Boosting Machine (light 

GBM), which accurately predicts wave height by 

overcoming the problems in existing research, and 

we remove the wave height column from the data 

frame to avoid loss. 

 

 The following is how the rest of the article is 

put together: Section 2 discusses the associated work. 

The proposed technique, including its processing 

phases, is discussed in detail in Section 3. Section 4 

explains the outcome of the research. Section 5 con-

cludes with the findings. 

2. Related works 

Due to the difficulties of data gathering and pro-

cessing power limits in the previous century, SWH 

prediction is primarily based on actual or mathemati-

cal models. Leading to a shortage of intellectual pro-

cesses, these strategies have high readability but poor 

prediction accuracy and poor applicability. Due to the 

rapid evolution of ML theory, many ML methods, 

such as Support Vector Regression, Bayesian Net-

work, XG Boost, extreme learning machine, and 

ANN, have been successfully employed in Sea Wave 

Height forecasting. In contrast to prior empirically or 

numerically based "hard computing" methodologies, 

these approaches were called "soft computing." 

Cornejo-Bueno et al. [Cornejo-Bueno et al., 

(2016)] proposed employing a hybrid clustering evo-

lutionary algorithms, an extreme learning machine 

technique for marine energy applications in SWH and 

flow prediction, and received positive results.  

Abhigna et al. [Abhigna et al., (2017)] investi-

gated SWH prediction by means of correlation Coef-

ficient (CC) and Mean Square Error (MSE) for Feed 

Forward and Recurrent Neural Networks trained us-

ing Levenberg Marquardt (LM), Conjugate Gradient 
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(CG), and Bayesian Regularization (BR). A year's 

worth of data from anchored buoys in the Bay of 

Bengal was utilized to train the network, and data for 

the next year was anticipated. Compared to other 

techniques, the Recurrent Neural Network with 

Bayesian Regularization fared the best.  

 

Nikoo et al. [Nikoo et al., (2018)] used a fuzzy 

K-nearest neighbor (FKNN) model to forecast Sea 

Wave Height, where wind direction changes affect 

fetch length. FKNN outperformed BN, regression 

tree induction, and support vector regression in terms 

of wave height prediction, especially for wave 

heights greater than 2 m. Wei and Hsieh [Wei & 

Hsieh, (2018)] used ANN in two settings to examine 

the feasibility of forecasting waves using data from a 

neighboring buoy. The study found that the model in-

corporating information from the neighboring buoy 

outperformed the existing works. Wang et al. [Wang 

et al., (2018)] used a Mind Evolutionary Algorithm-

Back Propagation neural network hybrid method 

(MEA-BP). Yang et al. [Yang et al., (2019)] aimed to 

forecast SWH based on a CS–BP model, taking into 

account the edges of backpropagation neural net-

works (BP) and cuckoo search algorithms (CS), and 

the suggested model has good potential for wave 

height prediction. In a recent study, Zhang and Dai 

[Zhang & Dai, (2019)] used the conditional limited 

Boltzmann machine in the traditional deep belief net-

work to forecast SWH. The measurement criterion 

demonstrated that the newly suggested technique is 

quite good at predicting short-term and severe occur-

rences. Son et al. [Son et al., (2020)] used the bi-di-

rectional convolutional Long Short Term Memory 

technique to estimate real-valued Sea Wave Height 

from a series of consecutive ocean photos, and they 

got low error indices. 

 

Fan et al. [Fan et al., (2020)] consumed Long 

Short Term Memory to predict Sea Wave Height with 

greater accuracy for various forecasting time hori-

zons and developed a simulating wave's nearshore-

LSTM to generate a single-point prediction. A lot of 

earlier research on SWH prediction has focused on 

employing superficial machine learning models like 

BP, SVM, etc. Still, they have failed to leverage the 

deep correlations between historical data over time 

fully. SWH has been effectively predicted using 

LSTM. However, one notable drawback of LSTM is 

that it requires many parameters for training. As a re-

sult, the training procedure is time-intensive and 

prone to overfitting.  

Choi et al. [Choi et al., (2020)] proposed using 

deep neural network-based algorithms to estimate ex-

treme wave heights in real-time from raw marine im-

ages. First, the authors calculated the appropriate 

wave height level using a single ocean picture. A 

classification model is built depending on CNN. Sec-

ond, the authors proposed using a regression model to 

estimate significant wave heights from many marine 

images. This technique extracts Spatio-temporal in-

formation from time-series pictures using convolu-

tional LSTM. Quach and colleagues [Quach et al., 

(2020)] Predicted SWH by extracting data from Syn-

thetic Aperture Radar (SAR) images using a CNN. 

When compared to earlier efforts, their DL-based so-

lution performed much better. This achievement es-

tablished the viability and efficacy of deep convolu-

tional techniques for the Sea Wave Height forecast. 

Gao et al. [Gao et al., (2021)] studied unique opera-

tional wave forecasting methods in the Bohai Sea, 

building wave height prediction models for three 

places. Using training samples of sea level wind and 

wave heights, this method is developed on a long 

short-term memory (LSTM) neural network.  

 

As a result, the literature mentioned above stud-

ies have various limitations, and to overcome the 

constraints in existing works, a novel technique is re-

quired. As a result, our research provides a novel net-

work that can accurately forecast wave heights, as 

discussed in the next phase. 

3. Intelligent ocean wave height predic-

tion system using light GBM model 

Marine disasters cause serious damage to many 

countries worldwide, resulting in thousands of casu-

alties and significant economic losses. Ships and ma-

rine or coastal infrastructure can be destroyed by 

ocean tides with a high Significant Wave Height. It is 

critical to anticipate sea wave heights rapidly and ex-

actly in disaster warning and emergency preparedness 

and the construction and preservation of seaside and 

offshore infrastructure, marine transport, and ecologi-

cal security. The existing research employs traditional 

empirical or numerical-based forecasting models to 

detect wave height, but it is complex and inaccurate; 

hence, our research introduces the light GBM, which 

predicts wave height over a half-hour period using a 

tree-based machine learning method. To filter out 

data instances and generate a split value, light GBM 

employs a design known as Gradient-based One-Side 

Sampling (GOSS). 

 

We used wave speed, peak wave direction, zero 

up crossing wave period, wave period, and SWH as 
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inputs. The light GBM model, over other soft compu-

ting models, enables us to input many features. All 

wave variables were used to train the model, includ-

ing wave period and peak wave direction. Three new 

features, comprising considerable wave height data, 

were generated before training, including wave-

length, wave number, and sea surface temperature. 

Before training the model, the current wave height 

column was removed from the data frame to avoid 

loss. Fig. 1 depicts the framework of the proposed 

method. 

 

 

 

 

 

Fig. 1. Structure of the proposed method 
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3.1 Dataset description 

This research collected the data from Coastal 

Data System – Waves (Mooloolaba) [26], in which 

wave characteristics were measured and calculated 

using data acquired by a Mooloolaba-based wave 

monitoring buoy. It is used to calculate sea levels, di-

rection, and period. The motion (or heave) of a wave 

monitoring buoy as it drifts up and down with each 

incoming wave is monitored and processed electroni-

cally. The information recorded by the wave monitor-

ing buoys is transmitted via radio signal to a nearby 

receiving station. The wave data is stored, analyzed, 

and summarized by a computer connected to the ra-

dio receiver. Wave monitoring station data is re-

trieved each hour, and fresh wave charts are posted to 

the web every 20 minutes. From 2017 until the pre-

sent, we acquired 43729 data points, 70 percent of 

which were utilized for training and 30 percent for 

testing. Significant wave height (𝐻𝑠), maximum wave 

height (𝐻𝑚𝑎𝑥), zero-up crossing wave period (𝑇𝑧), 

peak energy wave period (𝑇𝑃), peak direction, and 

Sea surface temperature are the variables in the gath-

ered datasets (SST).  

 

Table 1. Properties of various features used in this dataset [26] 

Variables 
Mini-

mum 

Maxi-

mum 

Aver-

age 

Stand-

ard 

Devia-

tion 𝜹 

Signifi-

cant wave 

height 

(𝐻𝑠) 

0.294 4.257 1.238 0.53 

Maximum 

wave 

height 

(𝐻𝑚𝑎𝑥) 

0.51 7.906 2.09 0.897 

Zero up-

crossing 

wave pe-

riod (𝑇𝑧) 

3.076 10.92 5.617 0.928 

Peak en-

ergy wave 

period 

(𝑇𝑃) 

2.72 21.12 9.00 2.39 

Peak di-

rection 

5 358 98.63 24.28 

Sea Sur-

face Tem-

perature 

(SST) 

19.8 28.65 23.95 2.23 

 

From table 1, the variables extracted from the 

Mooloolaba dataset, such as 𝐻𝑠, 𝐻𝑚𝑎𝑥, 𝑇𝑧, 𝑇𝑃 , peak 

direction and SST values are plotted in the following 

fig. 2. 
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Fig. 2. Variables extracted from the dataset [26] 

In fig. 2(a), 𝐻𝑠 represents the significant wave 

height; while analyzing a wave record, the highest 

one-third of the wave heights in the record is taken 

into account. Fig. 2(b) shows that the maximum sea 

level (𝐻𝑚𝑎𝑥), is the height of the highest single wave. 

Fig. 2(c) depicts the zero up-crossing wave period 

(𝑇𝑧), which is the average of a wave record's zero-up 

crossing wave periods. Fig. 2(d) illustrates the peak 

energy wave period (𝑇𝑃), which is the period of the 

waves that produce highest energy. Fig. 2(e) shows 

the peak direction, which is the angle measured in de-

grees from true north from which the largest waves 

are flowing. 

 

The Sea Surface Temperature (SST) is measured 

in degrees Celsius by a wave measurement buoy, as 

shown in fig. 2(f). Furthermore, the wave speed (C) 

is calculated based on the following stated formulas: 

Wavelength (L) = 
𝑔𝑇2

2𝜋
⁄  

Wave Number (k) = 2𝜋
𝐿⁄  

Angular Frequency (𝜔) = 2𝜋
𝑇𝑃

⁄  

Wave Speed (C) = 𝜔
𝑘⁄             (1) 

The other factors are the hour of the day, the day 

of the month, and the month of the year. As a conse-

quence, in this study, the wave frequency, peak wave 

direction, zero up crossing wave period, wave period, 

and SWH were employed as inputs. These values are 

then passed to the light GBM, which will be dis-

cussed in further detail in the following section. 
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3.2 Proposed light gradient boosting ma-

chine (lgbm) approach for wave height 

prediction 

 

Traditional empirical or numerical-based fore-

casting models are used in existing research. How-

ever, they are slow and inaccurate. Our research uses 

light GBM, a tree-based machine-learning algorithm, 

to accurately estimate wave height with minimum 

training time. light GBM is an ensemble technique 

that uses Decision Trees (DT), which perform data 

trapping and improving. Trapping and improving are 

two common statistical techniques for increased ac-

curacy. 

Furthermore, light GBM employs the forward 

distributing technique. The residue is matched by a 

negative slope in each iteration of learning a decision 

tree. First, prepare the training dataset as 𝐷𝑧 =

{(𝑥𝑧𝑖 , 𝑦𝑧𝑖)}𝑖=1
𝑛𝑧 , 𝑥𝑧𝑖 ∈ 𝑅𝑧

𝑚𝑧+1
, 𝑦𝑧𝑖 ∈ 𝑅𝑧, where 𝑛𝑧 is 

the number of samples. 𝑥𝑧𝑖(𝑖 = 1,2 … 𝑛𝑧) is 

𝑚𝑧 dimensional input vector and 𝑚𝑧 = 𝑁𝑧𝑤𝑧
×

𝑁𝑧𝑓𝑧
+ 𝐶, where 𝑁𝑧𝑤𝑧

 is the size of the time frame, 

𝑁𝑧𝑓𝑧
  is a number of characteristics that have been 

chosen, 𝐶 is the wave speed. 𝑦𝑧𝑖(𝑖 = 1,2 … 𝑛𝑧) is 

one of the dimensional wave height predictions is 

presented in fig. 3.  

 

 

Fig. 3. Light GBM structure for wave height prediction 

The height of the waves is calculated by aggre-

gating the prediction of each tree in a group of trees: 

𝑦𝑧�̂� = ∑ 𝑓𝑧𝑘(𝑥𝑧𝑖),

𝐾𝑧

𝑘=1

𝑓𝑧𝑘 ∈ 𝐹𝑧                                    (2) 

where 𝐾𝑧  is the total number of trees, 𝐹𝑧  is a 

space containing all potential tree structures, and 𝑓𝑧𝑘 

is one of the trees with leaf scores. By decreasing the 

objective, 𝑓𝑧𝑘 is obtained: 

𝑓𝑧𝑘 = arg min
𝑓𝑧𝑘

∑ 𝐿𝑧(

𝑛𝑧

𝑖=1

𝑦𝑧𝑖 , 𝑦𝑧�̂�
(𝑘)) + Ω(𝑓𝑧𝑘)          (3) 

Where 𝐿𝑧 is the loss function for training and Ω 

is the regularisation purpose, generally taken by the 

equation (4): 

Ω(𝑓𝑧𝑘) = 𝛾𝑇𝑧 +
1

2
𝜆 ∑ 𝜔𝑗

2

𝑇𝑧

𝑗=1

                                       (4) 

Where 𝛾 is the penalty parameter for the num-

ber of leaves 𝑇𝑧, and 𝜔 is the leaves' weights. When 

𝐿𝑧  employs a squared error loss function, the loss be-

comes: 

𝐿𝑧 (𝑦𝑧 , 𝑦�̂�
(𝑘−1)

+ 𝑓𝑧𝑘(𝑥𝑧)) = [𝑦𝑧 − 𝑦�̂�
(𝑘−1)

−

𝑓𝑧𝑘(𝑥𝑧)]
2
 (5) 

                                                  =  [𝑟𝑧 − 𝑓𝑧𝑘(𝑥𝑧)]2 

𝑓𝑧𝑘 is obtained using residual fitting 𝑟𝑧. Using a 

quadratic approximation, at round k, we can define the 

function to minimize as: 

𝑓𝑧𝑘 ≃ arg min
𝑓𝑧𝑘

∑[

𝑛𝑧

𝑖=1

𝑔𝑧𝑖 , 𝑓𝑧𝑘(𝑥𝑧𝑖) +
1

2
ℎ𝑧𝑖𝑓𝑧𝑘

2 (𝑥𝑧𝑖)]

+ Ω(𝑓𝑧𝑘)                   (6) 

Where 𝑔𝑧𝑖 = 𝜕�̂�𝑧(𝑘−1)𝐿𝑧(𝑦𝑧𝑖 , 𝑦�̂�
(𝑘−1)

), ℎ𝑧𝑖 =

𝜕�̂�𝑧(𝑘−1)
2 𝐿𝑧(𝑦𝑧𝑖 , 𝑦�̂�

(𝑘−1)
). As a consequence, minimiz-

ing this objective function generates a new tree. Fur-

thermore, the decision tree divides each node based on 

how it acquires information. Eq. (7) gives the variance 

gain of splitting feature j at location 𝑑𝑧 for a node: 
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𝑉𝑧𝑗\𝑂𝑍
(𝑑𝑧) =

1

𝑛𝑂𝑍

{
(∑{𝑥𝑧𝑖∈𝑂𝑍:𝑥𝑧𝑖𝑗≤𝑑𝑧}𝑔𝑧𝑖)

2

𝑛𝑧𝑙\𝑂𝑍

𝑗
(𝑑𝑧)

+

(∑{𝑥𝑧𝑖∈𝑂𝑍:𝑥𝑧𝑖𝑗>𝑑𝑧}𝑔𝑧𝑖)
2

𝑛𝑟𝑧\𝑂𝑍

𝑗
(𝑑𝑧)

}                 (7)  

where 𝑂𝑍 is the number of samples on a fixed 

decision tree node,  

𝑛𝑂𝑍
= ∑ 𝐼𝑧[𝑥𝑧𝑖 ∈ 𝑂𝑍] , 𝑛𝑧𝑙\𝑂𝑍

𝑗
(𝑑𝑧) =  ∑ 𝐼𝑧[𝑥𝑧𝑖 ∈

𝑂𝑍: 𝑥𝑧𝑖𝑗 ≤ 𝑑𝑧], 𝑛𝑟𝑧\𝑂𝑍

𝑗
(𝑑𝑧) = ∑ 𝐼𝑧[𝑥𝑧𝑖 ∈ 𝑂𝑍: 𝑥𝑧𝑖𝑗 >

𝑑𝑧].  

 

All samples must be scanned to select the opti-

mum partition point to calculate the information gain. 

When dealing with samples with enormous numbers 

and dimensions derived from significant wave height, 

efficacy and accuracy are challenging to achieve. 

Light GBM employs the Gradient-based One-Side 

Sampling (GOSS) approach to reduce the quantity of 

training information generated when a node divides, 

as shown in Eq. (7). To avoid loss, the current wave 

height column was deleted from the data frame be-

fore training the model. 

𝑉𝑧𝑗(𝑑𝑧) =
1

𝑛𝑂𝑍

{
(∑ 𝑔𝑧𝑖𝑥𝑧𝑖∈𝐴𝑧𝑙

+
1−𝑎

𝑏
∑ 𝑔𝑧𝑖)𝑥𝑧𝑖∈𝐵𝑧𝑙

2

𝑛𝑧𝑙
𝑗

(𝑑𝑧)
+

(∑ 𝑔𝑧𝑖𝑥𝑧𝑖∈𝐴𝑧𝑟𝑧
+

1−𝑎

𝑏
∑ 𝑔𝑧𝑖)𝑥𝑧𝑖∈𝐵𝑧𝑟𝑧

2

𝑛𝑟𝑧

𝑗
(𝑑𝑧)

}                    (8)  

 

where 𝐴𝑧 is a subset of the top a×100% exam-

ples with greater inclines, and 𝐵𝑧 is a subset ran-

domly selected from the outstanding set of (1-

a) ×100% instances with lesser gradients. 𝐴𝑧𝑙 =

{𝑥𝑧𝑖 ∈ 𝐴𝑧: 𝑥𝑧𝑖𝑗 ≤ 𝑑𝑧}, 𝐴𝑧𝑟𝑧
= {𝑥𝑧𝑖 ∈ 𝐴𝑧: 𝑥𝑧𝑖𝑗 >

𝑑𝑧}, 𝐵𝑧𝑙 = {𝑥𝑧𝑖 ∈ 𝐵𝑧: 𝑥𝑧𝑖𝑗 ≤ 𝑑𝑧},  𝐵𝑧𝑟𝑧
= {𝑥𝑧𝑖 ∈

𝐵𝑧: 𝑥𝑧𝑖𝑗 > 𝑑𝑧}.  

 

The GOSS approach determines the split point 

by computing the 𝑉𝑧𝑗(𝑑𝑧) rather than all occur-

rences, with a narrower sample of instances, reducing 

computing load and increasing noise signal redun-

dancy. The following figure 4 provides the overall 

flowchart of the proposed light GBM approach. 
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Fig. 4. Flowchart of the proposed approach 

 

  

 

 

 

 

 

 

1. Data Pre-processing 

 

 

 

 

 

 

 

 

Coastal Data 

System – Waves 

(Mooloolaba) Data 

Check Missing values and outliers 

Split the dataset into train, test 

data 

Define Features and 

Labels in Testing 

Dataset 

Define Features and 

Labels in Training 

Dataset 

Training Data 
2. Intelligent Ocean Wave Height Prediction System 

using Light GBM Model 
Initialize gradient 

boosting tree 

Fit Residual 

Obtain a decision 

tree 

Update tree model 

Maximum 

iterations? 

Finish training 

model 

No 

Yes Testing Data 

Output Wave 

Height Prediction 

Evaluate the 

Results 

3. Wave Height Prediction Input Test Set 



 

 J. P. Mishra, K. Singh and H. Chaudhary / Int. J. Systematic Innovation, 7(3), 62-75 (2022) 

 73  

 As a result, this research attains higher accuracy. 

Moreover, the following section discusses the performance 

and comparison results of the proposed method. 

4. Result and discussion 

This sector details the proposed approach's implemen-

tation outcomes, as well as its performance and compara-

tive findings. 

Tool      : PYTHON 3 

OS  : Windows 7 (64 bit) 

Processor : Intel Premium 

RAM   :8GB RAM 

4.1 Performance parameters 

The performance parameters of the proposed Light 

Gradient Boosting Machine technique are explained in this 

section. 

4.1.1 Training and validation accuracy 

Fig. 5. Accuracy in training and validation 

 

From fig. 5, Accuracy in Training and Validation are 

0.83 and 0.926 at epoch 14. As a result, the validation accu-

racy is greater than the training accuracy by using our pro-

posed light GBM approach, which shows the effectiveness 

of the proposed approach. 

4.1.2 Training and validation loss 

 
Fig. 6. Loss of training and validation 

 

The training and validation loss is 0.0032 and 0.002 at 

epoch 14, respectively. From fig. 6, the validation loss is 

lesser than the training loss by using our proposed light gra-

dient boosting machine approach.  

4.1.3 Significant wave height (𝑯𝒔) prediction 

 
Fig. 7. Substantial wave height (𝑯𝒔) prediction 

 

Fig. 7 illustrates the major wave height prediction 

findings. This substantial wave height (𝐻𝑠) is predicted by 

using our proposed machine learning light gradient boost-

ing machine approach. The anticipated wave height is sub-

stantially comparable to the actual significant wave height, 

demonstrating the efficacy of the proposed technique. 

4.1.4 Root mean square error (RMSE) analysis 

To assess the presentation of our method, we use 

measures such as Root Mean Squared Error (RMSE). 
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Root Mean Square Error (RMSE) 

To obtain the Root Mean square error, compute the re-

sidual (the difference among prediction and reality) for 

every portion of information, the norms of the residual for 

each piece of data, the average of residuals, and the square 

root of that mean. RMSE is widely used in supervised train-

ing systems since it utilizes and needs real observations at 

each projected data point. The square error is determined 

using the following formula: 

RMSE= √
∑ (𝑥𝑧𝑖−𝑥𝑧𝑖)̂2𝑁𝑧

𝑖=1

𝑁𝑧
                (9) 

Where, 𝑥𝑧𝑖 are temporal sequence of genuine obser-

vations, 𝑥𝑧�̂� is the time series estimation, 𝑁𝑧 is the num-

ber of missing points. 

 

 
Fig. 8. RMSE for 𝑯𝒔 and 𝑯𝒎𝒂𝒙 

 

Fig. 8 illustrates the RMSE for the significant wave 

height and maximum tallness. The obtained RMSE values 

of 𝐻𝑠, 𝐻𝑚𝑎𝑥 are 0.092 and 0.262, respectively, by using 

our proposed light GBM approach. 

4.2 Comparison analysis 

This section compares the proposed approach to other 

current techniques. In terms of NMSE, MSE, MAPE, and R 

values, the developed model's forecasting performance is 

compared to that of ANN models such as Multilayer Per-

ceptron's Neural Network (MPNN) [Elbisy & Elbisy, 

(2021)], Cascade Correlation Neural Network (CCNN) 

[Elbisy & Elbisy, (2021)] Radial Basis Function Neural 

Network (RBFNN) [Elbisy & Elbisy, (2021)] and General 

Regression Neural Network (GRNN) [Elbisy & Elbisy, 

(2021)]. 

4.2.1 Comparison of normalized mean squared 

error 

 

 
Fig. 9. Comparison of normalized mean squared error  

 

The overall Normalized Mean Squared Error compari-

son is shown in Fig. 9. The NMSE of the proposed tech-

nique improves by using light GBM. Our proposed ap-

proach attains lesser error when compared to the baseline as 

Multilayer Perceptron Neural Network (MPNN) [Elbisy & 

Elbisy, (2021)], Cascade Correlation Neural Network 

(CCNN) [Elbisy & Elbisy, (2021)], General Regression 

Neural Network (GRNN) [Elbisy & Elbisy, (2021)], and 

Radial Basis Function Neural Network (RBFNN) [Elbisy & 

Elbisy, (2021)] such as 0.0003, 0.0186, 0.0052, and 0.0003 

respectively. As a result, our novel technique has an error of 

0.0002, which is less than baseline approaches. 

4.2.2 Comparison of mean squared error 

The Mean squared error (MSE) is used to calculate the 

grade of error in statistical models. It is determined by the 

average squared difference between detected and predicted 

principles. 

MSE =  
1

𝑛𝑧
∑ (𝑦𝑧𝑖 − 𝑦𝑧𝑖)̂

2𝑛𝑧
𝑖=1               (10) 

Where, 𝑛𝑧 is the number of information sets, 𝑦𝑧𝑖  are 

the observed values, 𝑦𝑧�̂� is the forecasted value. 
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Fig. 10. Comparison of mean squared error (MSE) 

 

The overall MSE comparison is shown in Fig. 10. The 

MSE of the proposed technique improves by using light 

GBM. Our proposed approach attains lesser error when 

compared to the baseline as Multilayer Perceptron Neural 

Network (MPNN) [Elbisy & Elbisy, (2021)], Cascade Cor-

relation Neural Network (CCNN) [Elbisy & Elbisy, 

(2021)], General Regression Neural Network (GRNN) 

[Elbisy & Elbisy, (2021)], and Radial Basis Function Neu-

ral Network (RBFNN) [Elbisy & Elbisy, (2021)] such as 

0.0002, 0.0091, 0.0035, and 0.0001 respectively. As a re-

sult, our novel technique has an MSE of 0.0001, which is 

less than the baseline approaches.  

4.2.3 Comparison of mean absolute percentage 

error (MAPE) 

The Mean absolute percentage error (MAPE) of a pre-

dicting system is used to assess its accuracy. It computes 

the average absolute percentage inaccuracy of each entry in 

a dataset to determine how close the predicted quantities 

were to the actual amounts. 

MAPE (%) =  
1

𝑛𝑧
∑ |

𝐴𝑧𝑡−𝐹𝑧𝑡

𝐴𝑧𝑡
|

𝑛𝑧
𝑡=1             (11) 

Where, 𝑛𝑧 is the number of times the summation is it-

erated, 𝐴𝑧𝑡 is the real rate, 𝐹𝑧𝑡 is the forecasted rate. 

 

Fig. 11. Comparison of MAPE 

The overall Mean Absolute Percentage Error compari-

son is shown in Fig. 11. The MAPE of the proposed tech-

nique improves by using light GBM. Our proposed ap-

proach attains lesser error when compared to the baseline as 

Multilayer Perceptron Neural Network (MPNN) [Elbisy & 

Elbisy, (2021)], Cascade Correlation Neural Network 

(CCNN) [Elbisy & Elbisy, (2021)], General Regression 

Neural Network (GRNN) [Elbisy & Elbisy, (2021)], and 

Radial Basis Function Neural Network (RBFNN) [Elbisy & 

Elbisy, (2021)] such as 5.01%, 44.33%, 6.22%, and 2.23%. 

As a result, our novel technique has a MAPE of 2.21%, 

which is less than the baseline approaches. 

 

4.2.4 Comparison of correlation coefficient (R) 

The correlation coefficient is formulated as follows: 

𝑅 = 
∑ (𝑃𝑧𝑖−𝑃𝑧𝑖̅̅ ̅̅ )(𝑂𝑧𝑖−𝑂𝑧𝑖̅̅ ̅̅ ̅)

𝑁𝑧
𝑖=1

√∑ (𝑃𝑧𝑖−𝑃𝑧𝑖̅̅ ̅̅ )2 ∑ (𝑂𝑧𝑖−𝑂𝑧𝑖̅̅ ̅̅ ̅)2𝑁𝑧
𝑖=1

𝑁𝑧
𝑖=1

 

 

Where, 𝑂𝑧𝑖 , 𝑃𝑧𝑖 , 𝑁𝑧 , 𝑂𝑧𝑖
̅̅ ̅̅  and 𝑃𝑧𝑖

̅̅ ̅ indicates the ob-

served value, the forecasted rate, the observed number, the 

detected mean rate, and the forecast mean rate, in that order. 

 

 

Fig. 12. Comparison of correlation coefficient (R) 

The overall R comparison is shown in Fig. 12. The R-

value of the proposed technique improves by using light 

GBM. Our proposed approach attains a higher R-value 

when compared to the baseline like Multilayer Perceptron 

Neural Network (MPNN) [Elbisy & Elbisy, (2021)], Cas-

cade Correlation Neural Network (CCNN) [Elbisy & 

Elbisy, (2021)], General Regression Neural Network 

(GRNN) [Elbisy & Elbisy, (2021)], and Radial Basis Func-

tion Neural Network (RBFNN) [Elbisy & Elbisy, (2021)] 

such as 0.983, 0.973, 0.982, and 0.99 respectively. As a re-

sult, our novel technique has a Correlation Coefficient of 

0.994, which is higher than baseline approaches. 
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As a result, the error such as RMSE, NMSE, MSE, 

and MAPE values obtained by using our proposed approach 

as 0.092, 0.0002, 0.0001, and 2.21 respectively, which is 

outperformed when compared to the existing techniques. 

Also, the accuracy is high while there are less errors.   

5. Conclusion 

The LightGBM approach is proposed in this research 

for predicting sea wave height. The proposed approach is 

validated using the Mooloolaba Coastal Wave dataset. Pro-

cessing of data, feature selection, and time window pro-

cessing all contributed to strong performance on both the 

training and testing datasets. In comparison to earlier en-

semble approaches and neural networks, the proposed 

method achieves high accuracy and efficiency due to low 

error, and the prediction becomes increasingly accurate. Fi-

nally, the developed method attains less error when com-

pared to findings obtained by existing state-of-the-art ap-

proaches. Additionally, we observe that the numerical mod-

el's forecast of wave height sometimes lags. The predictions 

may not come true because our model only considers the 

significant wave height as an input. In further study, we will 

incorporate sea surface wind, atmospheric pressure, and 

other variables as input and influences to examine the ef-

fects of the wave type and meteorological components. To 

improve accuracy, deep learning or other optimization algo-

rithms might be examined in future. 
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