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Abstract 

Feature engineering is an important step in data analysis, especially for machine learning applications. A wide 

range of feature selection methods are being used in Electroencephalography (EEG) signal processing applications. 

Principal Component Analysis (PCA) is considered an ideal method for feature selection whenever high dimensional 

data is obtained, especially in signal processing applications. Following an examination of various EEG signal 

processing frameworks, PCA emerged as the winner in the battle to reduce dimensionality. Despite its widespread use, 

it has been found to be ineffective for EEG signal processing problems like epileptic seizure detection due to the 

nonlinear nature of the signal properties. Traditional methods for solving PCA are insufficient in this case, so suggest 

a novel technique. In this paper, PCA is explored with an EEG classification model. The proposed work demonstrates 

how PCA is robustified for an EEG signal processing scenario by applying kernel functions. Statistical features are 

extracted from EEG data after preprocessing by the Desecrate Wavelet Transform (DWT). Initially, the classical PCA 

algorithm is applied for feature selection by reducing the dimensionality. Later, the algorithm is robustified by 

applying a Gaussian kernel in a nonlinear, high-dimensional feature space. In an EEG classification of epileptic seizure 

detection, the adoption of robustified PCA outperforms conventional PCA in terms of accuracy.  

Keywords: PCA, Dimensionality Reduction, Electroencephalography (EEG), Feature Engineering, Signal 

Processing 
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1. Introduction 

Feature dimension is one of the challenging 

factors in machine learning based signal processing 

frameworks. Larger the number of features makes 

harder to process and visualize the data sets and working 

on it (F. Heydarpour et al., 2020 and Rahiminasab et al., 

2020). As most of the features are correlated one another, 

they may appear redundantly. This is the significance in 

adopting dimensionality reduction techniques in machine 

learning frameworks as stated in (R. John Martin, 2018). 

Wide ranges of feature reduction algorithms are being 

used for biomedical signal processing applications 

especially in Electroencephalography (EEG). Principal 

Component Analysis (PCA) is the commonly used 

dimension reduction algorithm in EEG based 

frameworks of epileptic seizure detection. The main 

characteristic of PCA is to express the data by reducing 

number of dimensions without much loss in the required 

data. It is a process of reducing the number of variables 

under consideration by setting a set of principal 

variables.  

The purpose of PCA is to identify the subset of 

features in our dataset that best capture information on 

the entire dataset, allowing us to minimize dimensions 

with minimal information loss. For example, one can 

reduce the dimension of training data before feeding it 

to a ML model for classification to reduce computation 

time as in (R. John Martin, 2022). High correlation 

filters, random forests, and backward feature 

elimination are some of the strategies for dimensionality 

reduction. PCA effectively handles this problem by 

determining principal components, which are linear 

combinations of the original features. These components 

are extracted in such a way that the first captures the 

most variance in the dataset; the second collects the 

remaining variance while staying uncorrelated to the 

first, and so on. 

Using the PCA can result in some information loss 

if we do not choose the right number of principal 

components for our data set and its variance. When we 

apply Principal Component Analysis to our data set, the 

original features are transformed into principal 

components: linear combinations of original data 

features. But which features, variables, or characteristics 

in the data set are the most significant? After performing 

the PCA, answering this question can be difficult. The 

loss of information is caused by nonlinear relationship 

between the features, which is also supported by a wide 

range of studies on EEG classification frameworks as 

stated in table 1. It is essential to keep the significant 

feature components in the dataset that will play a crucial 

role in the classification frameworks. This is the prime 

motive of this research. 

The core objective is to minimize the data loss in 

the EEG classification models by enhancing the 

classical PCA. After extensive research, it was 

discovered that the PCA technique may be utilized to 

extract the necessary single or multiple EEG feature 

frequencies from an EEG input. Each signal's 

characteristic frequency yields just two valid 

eigenvalues. The number of effective eigenvalues is 

proportional to the number of raw signal frequencies and 

has no bearing on the size of signal sub - bands. Hence, 

the wavelet method of signal sub-band is obtained using 

DWT and applied to PCA. Now, the major challenging 

factor in this process is nonlinearity. Abnormalities in a 

multi-channel EEG must have nonlinear properties, so 

its signal sub bands must be processed and the 

significant features retained using nonlinear kernel-

based analysis using robustified PCA (Cao, H et al., 

2022).  

In this attempt, the classical PCA is robustified by 

using nonlinear kernel (Katayama H et al., 2022) so as 

to avoid the loss in cumulative EEG signal feature 

dimension, which will lead to accurate disease diagnosis. 

The contributions of this research include: 

• Study the existing EEG based epileptic seizure 

detection frameworks using classical PCA as 

feature selection method 

• Propose an enhanced PCA with nonlinear kernel 

• Experiment Classical PCA and Nonlinear PCA, 

and compare their performance 

The following sections of this paper reviews and 

exhibit the use of PCA and its variants in EEG signal 

processing with the application of epileptic seizure 

detection frameworks. Section two of this paper 

provides a comprehensive analysis of dimensionality 

reduction techniques used with EEG signal processing 

applications. Section three presents the concepts of 

conventional PCA and robustified PCA with an 

experimental framework of epileptic seizure detection. 

An EEG signal classification is used for validating how 

best the robustified PCA responds. The outcomes of the 

experiments are given in section four and the conclusion 

in section five. 

https://www.ijimai.org/journal/bibcite/contributor/6651
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2. Related Works 

Different approaches are adopted for feature 

selection processes in EEG signal data analysis. Many 

works used non-linear statistical methods for reducing 

the feature dimension. Gajic et al. (2014) adopted scatter 

matrix method of feature reduction in epileptic seizure 

detection problem. In an Alzheimer’s disease detection 

problem, Trambaiolli et al. (2017) used eight different 

algorithms for reducing features. Ozan Kocadagli et al. 

(2017) reported that they have employed fuzzy relations 

for reducing the features for epileptic seizure 

classification. 

Ming-ai Li et al. (2016) extracted features using 

DWT and used an approach called parametric t-

Distributed Stochastic Neighbor Embedding (P. t-SNE) 

for extracting reduced nonlinear features from MI-EEG. 

Edras Pacola et al. (2017) used Linear Discriminant 

Analysis (LDA) for obtaining distinctive features for 

binary classification by reducing the extracted features 

using wavelets. In a comparative study by Bugli C et al. 

(2007), Independent Component Analysis (ICA) and 

PCA were analyzed for efficient event detection. 

Similarly, Kavita Mahajan et al. (2011) also employed 

PCA and ICA for dimensionality reduction for their 

EEG classification problem. For evaluating the 

performance of various dimensionality reduction 

techniques, Harikumar et al. (2015) applied PCA, ICA 

and SVD to a epileptic seizure detection problem. 

Sharmila et al. (2017) used PCA and LDA to dimension 

reduction of extracted features using DWT for 

classification of epileptic EEG.  Paulo Amorim et al. 

(2017) adopted PCA, LDA and ICA to reduce the feature 

space for an EEG classification problem. Xiao-Wei 

Wang et al. (2014) used PCA, LDA, and correlation-

based feature selector (CFS) for dimensionality 

reduction in an emotional state classification problem 

using EEG.  

Hadi et al. (2016) inducted Sequential Forward 

Feature Selection (SFS) algorithm for selection of 

features and to reduce the dimensionality for 

classification of epileptic EEG. Elahi et al. (2013) 

employed two methods such as SFS and LDA for feature 

reduction in order to maximize classification accuracy. 

According to Ahmad M. Sarhan (2017), statistical 

moments are applied in an epileptic seizure detection 

problem to reduce the dimensionality of input and to 

choose the features. Wavelet coefficients are used 

manually to reduce feature dimension after wavelet 

analysis in the works reported in (Satchidanada Dehuri 

et al., 2013) and (Benzy V.K. and Jasmin E.A., 2015). 

In a multi-channel EEG data analysis by Gopika Gopan 

et al. (2015), feature reduction is achieved by limiting 

channel dimension. The extracted features from 

different domains are reduced by using PCA and 

Analysis of Variance (ANOVA) methods as reported in 

(Lina Wang et al., 2017). Similarly, Rajendra Acharya et 

al. (2012) used PCA for feature dimension reduction and 

ANOVA for feature selection in a wavelet framework of 

seizure detection problem. 

A recent seizure detection framework of John 

Martin et al. (2021) used kernel PCA for feature 

optimization to enhance the classification accuracy and 

it is claimed that the kernel PCA is working well with 

SVM for EEG classification. To attain maximum 

separability extracted features are reduced in dimension 

using PCA as reported by M Aminion et al. (2010). 

Similarly, Xie et al. (2014) attain the dimensionality 

reduction by removing insignificant components using 

PCA for epileptic EEG classification. In another work 

by Xie et al. (2011) used multi-scale PCA by combining 

WT and PCA to obtain reduced features. Noertjahjani et 

al. (2016) used PCA as an effective feature extraction 

method for the epileptic EEG classification using SVM.   

Roozbeh Z et al. (2017) applied robust feature 

extraction method by combining PCA and cross-

covariance technique (CCOV) in order to reduce the 

feature dimension of EEG. In an EEG based vigilance 

estimation problem proposed by Li-Chen Shi et al. 

(2013), tried three other PCA variants for feature 

dimension reduction such as L1 norm PCA, sparse PCA 

and robust PCA along with standard PCA. Williamson 

et al. (2012) stated that principal components are 

obtained by reducing extracted features for their SVM 

classifier. “Table.1” shows the diversified approaches 

used for feature selection in the recent EEG 

classification frameworks of seizure detection. 

Table 1 Summary of feature selection methods used in EEG 

classification problems 

Reference 
Feature Selection 

Method Adopted 

Gajic et al. (2014, 2015) Scatter Matrix 

Ozan Kocadagli et al. (2017) Fuzzy Relations 

Ming-ai Li et al. (2016) P. t-SNE 

Hadi et al. (2016) SFS 

Elahi et al. (2013) SFS & LDA 

Ahmad M. Sarhan (2017) Statistical moments 

Satchidanada et al. (2013) 

Benzy V.K. et al. (2015) 

Wavelet 

coefficients 

Gopika Gopan et al. (2015) Channel reduction 

Edras Pacola et al. (2017) LDA 

Kavita Mahajan et al..(2011) 

Bugli C et al. (2007) 
ICA & PCA 
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Harikumar et al. (2015) 
PCA, ICA and 

SVD 

Sharmila et al.(2017) PCA & LDA 

Paulo Amorim et al. (2017) PCA, LDA & ICA 

Xiao-Wei Wang et al. (2014) PCA, LDA & CFS 

Lina Wang et al. (2017) 

Rajendra Acharya et al. (2012) 
PCA & ANOVA 

John Martin R  et al. (2021) 

Aminion et al. (2010) 

Xie et al.(2011, 2014) 

Noertjahjani et al. (2016) 

Chunchu R et al.(2014) 

Manisha Chandani et al..(2017) 

Sabeti M. et al..(2011) 

Hashem   et al. (2017) 

Esma Sezer, et al (2012) 

Harikumar R.et al. (2015) 

Williamson JR et al. (2012) 

PCA 

Li-Chen Shi et al. (2017) 

L1 norm PCA, 

sparse PCA and 

robust PCA 

PCA is frequently employed for feature selection 

in the EEG signal classification frameworks of epileptic 

seizure detection, according to the referenced literatures. 

When comparing PCA to one or more alternative 

feature selection methods such as ICA, SVD, LDA, 

CFS, and ANOVA [ Harikumar et al. (2015), Kavita 

Mahajan et al.(2011), Bugli C et al. (2007), Sharmila et 

al.(2017), Paulo Amorim et al. (2017), Xiao-Wei Wang 

et al. (2014), Lina Wang et al. (2017) and Rajendra 

Acharya et al. (2012) ], it is clear that PCA is the best 

method for reducing feature dimension. According to 

John Martin R et al. (2021), Hashem et al. (2017), and 

Xie et al. (2011, 2014), the PCA significantly improves 

classification performance over other feature selection 

approaches. 

Though PCA would identify the highly significant 

features in an EEG classification problem, it is critical 

to maintain every required feature to avoid 

misclassification, especially in epileptic seizure 

detection applications. This is the driving force for 

using kernel approaches to improve the PCA's 

robustness. 

3. Methods 

Principal Component Analysis (PCA) is a feature 

reduction method which transforms a high dimensional 

dataset into a low-dimensional orthogonal feature space 

while retaining the maximum variance of the original 

high dimensional dataset. In the framework of EEG 

classification, PCA is inducted for feature dimension 

reduction, which will consolidate the most significant 

feature vectors into one or more principal components. 

Initially, wavelet domain feature extraction is 

materialized using multiscale approximation principle 

of DWT as stated in (R. John Martin, 2018). Extracted 

high-dimensional features in DWT are further subjected 

to analysis in order to obtain compact dimension in size 

to enable the classification process effective and 

efficient. The proposed research is carried out in two 

stages: first, traditional PCA is implemented for EEG 

classification (Sec. 3.1) , and then, using the kernel 

function, robustified PCA is developed (Sec. 3.2).   

The assumptions that are used to approach PCA 

for optimum productivity include: Linearity: The 

principal components (PCs) are a linear combination of 

the original features. PCA may not provide expected 

results, if this is not true. Large variance implies more 

structure: Variance is an important measure in PCA 

which indicates how significant a particular dimension 

is. Hence high variance vectors will be emerged as 

principal components. Orthogonality: In PCA, principal 

components are considered as orthogonal.  

3.1. Feature Dimension Reduction using Classical 

PCA 

Each orthogonal feature vector is referred to as a 

Principal Component (PC). Eigen values are scalar 

factors of the degree of variance within the particular 

PCs. Principal components are graded by their 

corresponding Eigen values, and accordingly, the first 

PC captures the most significant variance in the dataset. 

The second one is perpendicular to the first and gets the 

next significant variance. The two major steps in PCA 

include: i) Perform mean normalization and finding the 

covariance matrix: The mean of the original signal data 

in all dimensions is first subtracted to produce a data set 

with a zero mean. Consequently, the covariance matrix 

is calculated. And ii) Compute eigenvalues and 

eigenvectors: The covariance matrix decomposition to 

obtain a matrix of eigenvectors in a n-dimensional space 

(n PCs) and their corresponding eigenvalues. This will 

be done with the help of the following algorithm:  

Reducing data from n-dimensional to k-

dimensional space. Computing the covariance matrix S: 

𝑆 =  ∑ (𝑥𝑖 − 𝑚)(𝑥𝑖 − 𝑚)𝑇           (1)𝑛
𝑖=1   

 S is an [n x n] matrix.  

Compute eigenvectors and eigenvalues of matrix 

S  

[U, V] = eigs (S), where eigs provides eigenvector.  

U and V are matrices, where U matrix is an [n x n] 

matrix, turns out the columns of U are the u 
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vectors, so to reduce a system from n-dimensions 

to k-dimensions to take the first k vectors from U 

(first k columns). 

U =  [u(1)     u(2)  … … u(n)]  ∈ R 

It needs to find the way to change ‘x’ (which is n 

dimensional) to z (which is k dimensional). Thus 

reduces the dimensionality. 

Take first ‘k’ columns of the ‘u’ matrix and stack in 

columns, where n x k matrix - call this Ureduce 

(a) Calculate ‘z’ as follows,  

𝑧 = (Ureduce)T × x                    (2) 

so, [k x n] * [n x 1] Generates a matrix which is k * 1. 

Features are extracted through DWT based 

multiresolution analysis (MRA). Conventional method 

of PCA is materialised by applying features. The feature 

matrix X is in dimension 300 x 54 (100 samples each 

from F, N & S segments and each with 54 features). The 

input feature space is normalized by de-mean the feature 

matrix. As the first step the covariance matrix of the 

feature matrix is obtained. The eigenvalues and 

eigenvectors are then calculated by using covariance 

matrix. This has been achieved by using the following 

Matlab code: 

[coeff,score,latent,~,explained] = pca(X); 

Where, "coeff" are the eigenvectors of the covariance 

matrix called principal component vectors, "latent” is 

the output and are the eigenvalues of the covariance 

matrix. Multiply the original data by the principal 

component vectors to get the projections of the original 

data on the principal component vector space. This is 

also the output "score".  

The features now in principal component space 

with variations specified in a vector “explained” is in 

“Table 2”. The feature variations obtained after 

conventional PCA is represented by using a scree plot  

in “Fig. 1”. From the scree plot it is noticed that the first 

3 principal components (PC1, PC2, and PC3) together 

explain 98.1% of the variation. Thus the feature 

dimension is reduced to three and the remaining is 

considered insignificant. 

Table 2 Vectors in principal component space during 

classical PCA 

Principal 

Components 
Variation 

PC1 76.56131087 

PC2 16.82612710 

PC3 4.71003453 

PC4 1.90019686 

PC5 0.00232034 

PC6 0.00000449 

PC7 0.00000420 

PC8 0.00000101 

PC9 0.00000028 

PC10 0.00000019 

PC11 0.00000010 

PC12 0.00000003 

PC13 0.00000001 

………………. Up to PC54 

 
Fig. 1 Scree plot showing percentage of variances among PCs in 

Classical PCA 

3.2 Feature Dimension Reduction using Robustified 

PCA 

In high dimensional biomedical data like EEG, 

PCA is best used for expressing linear variability. But 

the characteristic of the high dimensional EEG data set 

is that it has a non-linear nature. In those circumstances 

PCA cannot determine the variability of data accurately. 

In order to address this issue of non-linear 

dimensionality reduction, kernel-based PCA can be 

recommended. Some improvisations are recommended 

with the usage of kernel functions for nonlinear mapping 

so that the principal components are computed 

efficiently in high dimensional feature spaces.  

In general, non-linear methods (Harikumar R et al., 

2015) are being applied to robustify the classical PCA. 

The extended form of a classical PCA is called 

Kernel Principal Component Analysis (Chenouri S et al., 

2015; Schölkopf Bernhard et al., 1998) by adopting 

kernel methods. Some innovative approaches applied 

towards classical PCA which may enhance dimension 

reduction process are termed as robust PCA.  

The linear transformation of PCA functionalities 

are carried out in a reproducing kernel Hilbert space 

with a nonlinear mapping.  In kernel-based method, the 

mapping carried out by Kernel PCA depends on the 

choice of the kernel function K, probably it may include 

the linear kernel; and the nonlinear kernel functions such 
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as the polynomial kernel and the Gaussian kernel. In this 

method, principal components are computed efficiently 

in a high-dimensional feature spaces that are related to 

the input space by some nonlinear mapping.  

Kernel PCA chooses the principal components 

which are nonlinearly related to the input space by 

performing PCA in the high dimensional input space 

obtained through nonlinear mapping, where the low-

dimensional latent structure is, expected to be found 

easily.  

Consider a feature space Φ such that: 

𝑥 → Φ(𝑥)                                (3) 

Let’s suppose   ∑ Φ(𝑥𝑖) = 0𝑡
𝑖  ; it will formulate 

the kernel PCA objective function as follows:  

min ∑‖Φ(𝑥𝑖) −  𝑈𝑞𝑈𝑞
𝑡  Φ(𝑥𝑖)‖

𝑡

𝑖

             (4) 

Where U represents the eigenvectors of Φ(X)Φ(X)T. 

Note that if Φ(X) is n × t and the dimensionality of the 

feature space n is large, then U is n × n which will make 

PCA impractical. 

In order to reduce the dependence on n, it is 

assumed that a kernel K (·, ·) will compute K(x,y) = 

Φ(x)TΦ(y). Given such a function, compute the matrix 

Φ(X)TΦ(X) = K efficiently, without computing Φ(X) 

explicitly. Significantly, K is t × t here and does not 

depend on n. Thus, it can be computed in a run time that 

depends only on t. And also, it is observed that the PCA 

can be formulated fully in terms of dot products between 

data points. Replacing dot products by kernel function 

K, which is in fact equivalent to the inner product of a 

Hilbert space yields to the Kernel PCA algorithm. In 

order to attain optimum classifier performance in this 

proposed model, Gaussian kernel is inducted to 

robustify the conventional PCA.  

On implementation of robustified PCA using 

Gaussian kernel function, the features of the input data 

is mapped into the principal components space. The 

variations of the principal components expressed in a 

vector “explained” are given in “Table 3”. Observing the 

concentrated principal components in PC1, PC2, and 

PC3 obtained from robustified PCA, it is clear that the 

three principal components mentioned above can 

identify 99.13 percent of the variations in the input data. 

This is 1.03% ahead of the classical PCA. The scree plot 

in “Fig.2” illustrates the concentrations in the principal 

components of robustified PCA. 

 

Table 3: Vectors in principal component space during 

robustified PCA 

Principal 

Component 

Variation 

PC1 77.25931087 

PC2 16.99712710 

PC3 4.86903453 

PC4 0.87319686 

PC5 0.00132034 

PC6 0.00000449 

PC7 0.00000420 

PC8 0.00000101 

PC9 0.00000028 

PC10 0.00000019 

PC11 0.00000010 

PC12 0.00000003 

PC13 0.00000001 

 …………….. Upto PC54 

 

Fig 2: Scree plot showing percentage of variances among PCs in 

Robustified PCA 

4. Results and Discussions 

The major objective of this research was to 

improve the classical PCA to avoid the loss of important 

feature dimensions which are contributing towards 

accurate classification. The proposed method, two 

variants namely Classic PCA and robustified PCA are 

implemented towards the EEG classification problem.  

In the first phase of the research, classical PCA is 

adopted to identify most significant features which are 

concentrated in the principal components. The 

percentage of variances in the data set concentrated in 

the principal components PC1, PC2 and PC3 together as 

98.1% as represented in table 1 and figure 1, which 

means 1.9 % of the feature properties are remain with     

the rest of the principal components. Eliminating 

remaining 1.9% of the feature properties may lead to 

misclassification.    

As a second experiment, robustified PCA is 

implemented with the dataset. While looking at the 

percentage of variances in scree plots, it's evident that 

robustified PCA can explain 99.13 percent of the 
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features, which is 1.03 percent ahead of classical PCA in 

the first phase. This is a clear indication of the enhanced 

performance of the robustified PCA over classical PCA. 

Thus, it is presumed that this enhancement will lead to 

perfect classification of EEG signals. 

In order to verify this enhancement in an EEG 

classification framework, the reduced feature matrix is 

prepared as training and test sets from the pool of 300 

signal feature inputs representing ictal and interictal 

EEG samples of different subjects named Z, O, N, F and 

S (R. John Martin et al, 2022). The most significant 

features concentrated in the first three principal 

components (PC1, PC2 and PC3) are applied to the 

classifier for epileptic EEG detection on both scenarios. 

The SVM nonlinear Polynomial kernel-based classifier 

is used to classify the signal inputs on two subjects 

namely seizure (ictal) and seizure-free (interictal).  In 

order to perform a 5-fold cross validation, 5 sets of 

training and corresponding test samples are prepared 

from the reduced feature matrix.  

"Table.4a" demonstrates the performance of the 

classifier on the selected feature dimensions using 

classical PCA. It should be noted that the SVM-based 

classifier demonstrated 98.9% accuracy, implying that 

the classifier may exhibit 1.1% error in EEG signal 

classification, which is a cause for concern in disease 

diagnostics.    

Subsequently, the classification model is used with 

robustified PCA using its three principal components 

PC1, PC2 and PC3. It is observed that the robustified 

PCA using Gaussian kernel is doing better in the EEG 

classification framework of epileptic seizure detection 

which is 0.7% ahead of classical PCA as stated in “Table 

4b”. This clearly shows that by identifying the most 

important EEG signal feature properties using the first 

three principal components, the robustified PCA 

significantly improves classification performance, 

resulting in accurate disease diagnosis. 

Table 4: a) Classifier Performance with Features 

selected using Classical PCA 

Classifier 
Kernel 

Parameters 

5-fold Cross Validation  

SEN SPE ACC 

SVM-

Polynomi

al Kernel 

d=2 0.937 0.967 0.938 

d=5 0.965 0.996 0.989 

Table 4: b) Classifier Performance with Features 

selected using Robustified PCA 

Classifier 
Kernel 

Parameters 

5-fold Cross Validation 

SEN SPE ACC 

SVM-

Polynomial 

Kernel 

d=2 0.927 0.989 0.975 

d=5 0.989 0.994 0.996 

5. Conclusion 

In this paper, a methodology has been proposed to 

enhance the classical PCA in EEG classification 

frameworks. The article began by reviewing the 

literature on EEG signal classifications for epileptic 

seizure detection utilizing classical PCA as a feature 

selector. As it has been mentioned, the majority of 

authors employed traditional PCA in their frameworks, 

who established that the EEG machine learning 

frameworks responded well to PCA combinations with 

only mediocre accuracy. Though PCA is a popular 

approach for reducing feature dimensions when there 

are a large number of features in classification problems, 

its performance is questionable when there is a nonlinear 

relationship between the data variables. This was the 

inspiration for the proposed research to enhance the 

classic PCA by incorporating a nonlinear kernel. 

Initially the classical PCA is experimented and tested 

with SVM based nonlinear classifier. After that, the 

classical PCA is enhanced with a Gaussian kernel, 

implemented and tested with EEG signal classification. 

On comparing the feature variations with selected 

principal components, it is noted that the kernelized 

PCA performed better. Thus, the classical PCA is 

enhanced. The EEG classification model performed 

better than classical PCA when the reduced features 

from robustified PCA were applied. As a result, the 

proposed PCA enhancement significantly improves 

disease diagnosis by eliminating misclassification of 

EEG signals. Furthermore, this research experiment 

yields significant outcomes that will be beneficial for 

future signal processing researchers. 
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