
DOI: 10.6977/IJoSI.202206_7(2).0003

H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 37

Software Defect Prediction Using Support Vector Machine

HHaanneeeenn AAbbuu AAllhhiijjaa 11,, MMoohhaammmmaadd AAzzzzeehh22** aanndd FFaaddii AAllmmaassaallhhaa11

11 DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee,, AApppplliieedd SScciieennccee PPrriivvaattee UUnniivveerrssiittyy,, AAmmmmaann,, JJoorrddaann
22 DDeeppaarrttmmeenntt ooff DDaattaa SScciieennccee,, PPrriinncceessss SSuummaayyaa UUnniivveerrssiittyy ffoorr TTeecchhnnoollooggyy,, AAmmmmaann,, JJoorrddaann

** CCoorrrreessppoonnddiinngg aauutthhoorr EE--mmaaiill:: mm..aazzzzeehh@@ppssuutt..eedduu..jjoo

(Received 21 August 2021; Final version received 16 April 2022; Accepted 14 April 2022)

Abstract

Software defect prediction is an essential task during the software development Lifecycle as it can help man-

agers to identify the most defect-proneness modules. Thus, it can reduce the test cost and assign testing re-

sources efficiently. Many classification methods can be used to determine if the software is defective or not.

Support Vector Machine (SVM) has not been used extensively for such problems because of its instability

when applied on different datasets and parameter settings. The main parameter that influences the accuracy is

the choice of the kernel function. The use of kernel functions has not been studied thoroughly in previous pa-

pers. Therefore, this research examines the performance and accuracy of SVM with six different kernel func-

tions. Various public datasets from the PROMISE project empirically validate our hypothesis. The results

demonstrate that no kernel function can give stable performance across different experimental settings. In ad-

dition, the use of PCA as a feature reduction algorithm shows slight accuracy improvement over some da-

tasets.

Keywords: Kernel functions, Software Defect Prediction, Support Vector Machine.

1. Introduction

Predicting defect-prone modules during the soft-

ware development process is crucial because it helps

the quality assurance team put more effort into modules

with a high probability of defect-proneness. It also

helps the management team assign and distribute re-

sources efficiently during testing, thus reducing devel-

opment costs (Wang and Yao (2013), Xu et al. (2019)).

The process of manually reviewing the code usually

leads to a detection rate between 35% - 60% in most

cases, but this rate is in-creased when defect prediction

tools are used. Furthermore, the time needed to detect

defect-proneness modules is reduced (Tosun (2010)).

Software Defect Prediction (SDP) is performed by

extracting static code metrics from bug log files of pre-

vious versions of the program, then using these static

metrics for building models to predict the possible de-

fects in future releases of the program (Wang and Yao

(2013), Yang et al. (2014)). This process helps detect

the location of the parts of the program that are likely

to induce defects. It is used in a software system with a

limited project budget or too large to be tested ex-

haustively. SDP can be primarily used in two ways:

within a project or cross-project. The first approach

implies using the same data as training and testing

during the empirical validation process. In the second

approach, one release of the project data is used as

training, and the subsequent release is used as testing.

Both approaches are acceptable and depend on data

availability (Lie et al. (2012)).

Any SDP model comprises four main elements:1)

independent features representing static code metrics, 2)

output features representing the presence of a defect or

its absence. 3) The learning approach, and finally 4) the

performance measures that are used to judge the accu-

racy of the built learning model (Huda (2017)). The

current studies on SDP models focus on four research

aspects. The first aspect examines the importance of-

static code metrics for defect prediction and which

metrics are more predictive than others (Lie et al.

(2012), Bowes et al. (2018), He et al. (2015), Okutan

and Yildiz (2014). The second aspect focus on building

mailto:m.azzeh@psut.edu.jo

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 38

defect prediction models from within data or across

data (Son et al. (2019)). The third aspect studies the

effect of imbalanced data on the accuracy of defect

prediction models (Wang and Yao (2013), Choei-

kiwong and Vateekul (2015), Sheppered et al. (2014),

Sun et al. (2012)). Finally, the fourth aspect focuses on

using ranking techniques to predict the correct rank of

the defected modules based on their number of defects

(Yang et al. (2014), Li (2011)). This study focuses on

the second research aspect and attempts to study the

performance of support vector machine with different

kernel techniques for software defect prediction prob-

lems. Support Vector Machine (SVM) is an efficient

machine leaning method that is suited for classification

problems, as in our case (Hassan (2009), Kumudha and

Venkatesan (2016), Chen et al. (2019)). The SVM has

not been studied thoroughly in previous papers because

of the instability of its accuracy over multiple datasets

and it is easily influence by the choice of kernel func-

tions (Ni et al. (2017), Ryu et al. (2019), Wei et al.

(2019)). This study attempts to bridge that research gap.

Different Kernel functions will be used to test the ac-

curacy of SVM for defect prediction problems

(Al-Jamimi and Ghouti (2011), Ryu et al. (2016)). This pa-

per aims to study the impact of different Kernel func-

tions in support vector machine for the problem of

software defect prediction. Six public datasets will be

used to empirically validate and test our hypothesis and

assumptions. These datasets were obtained from

PROMISE data repository.

The rest of paper is structured as follows: Section

2 presents related work. Section 3 presents datasets.

Section 4 shows methodology of our research. Section

5 presents results and discussion. Finally, section 6

presents conclusion.

2. Related Work

Sheppard et al. (2014) examined the factors that

affect the prediction of software defects. 42 studies out

of 600 studies were used for the meta-analysis. The

challenges were examined by the NOVA model so that

the prediction process was divided into the groups: (1)

Classifier family: in this group, the defect prediction

techniques were divided to 7 main sections; Decision

Tree, Recognition, SVM, Neural Network (ANN), Na-

ive Bayes, CBR, Search and Benchmark. (2) Data set

family: In this group, the Dataset had been divided into

24 this group, the Dataset had been divided into change

or static metrics. (4) Researcher Group: There are two

clusters of researchers; the most significant cluster is

8-10 researchers. The meta-analysis revealed strong

evidence that current experiments in predicting defects

are in-adequate and ineffective. Okutan et al. (2014)

used Bayesian Network to find the relationships among

metrics and defect proneness in different datasets. The

PROMISE data repository used many public datasets

for this experiment, such as Ant, Tomcat, Jedit, Veloci-

ty, Synapse, Poi, Lucene, Xalan, and Ivy. The static

metrics used were LOC, CBO, LOCQ, WMC, RFC,

LCOM, LCOM3, DIT, and NOC. Each of these da-

tasets has a version number and instance number. The

results show that the Lack of Coding Quality (LOCQ)

has been evaluated as one of the best scores in the ex-

periments.

Son et al. (2019) studied the prediction of soft-

ware defects through systematic mapping and estab-

lishing a protocol for the mapping. The processes of

systematic mapping have been done in four stages :(1)

Application of Inclusion-Exclusion Criteria: this stage

is divided into two stages Inclusion Criteria and Exclu-

sion Criteria. Inclusion Criteria: In this stage of the

study, the defect predication used software metrics

provided by the analysis of statistical, search-based and

machine learning techniques. Exclusion Criteria: In this

stage study, the defect prediction does not use depend-

ent variable and non-empirical nature. (2) Quality

Analysis: at this stage, choose the evaluation meth-

od-ology used (3) Data Extraction: what kind of data is

used (4) Data Synthesis: involves the accumulation of

facts from the collected data during the data extraction

process. This experiment used the techniques: Decision

Tree, Support Vector Machine, Neural Network, Re-

gression and Bayesian Learning. The Dataset was taken

from different resources such as NASA, Eclipse,

Mozilla, etc. The result indicated good accuracy when

using a large Dataset with different metrics.

He et al. (2015) used the Dataset from PROMISE,

they selected 34 releases; each one has a number of

instances files and number of defects. This study used 1)

several independent variables which represent the in-

puts that will affect the dependent variable. The study

used 20 static code metrics including CK suite, Mar-

tin's metrics, QMOOM suite, Ex-tended CK suite,

McCabe's CC, and LOC. 2) Dependent variables:

which represents the outputs and effect, it was studied

to see how much it varies as the independent variables

change. It used different machine learning algorithm; in

order to evaluate the result such as J48, Decision Tree,

Support Vector Machine, Logistic Regression, and Na-

ïve Bayes. The result showed that the simple metrics

could be helpful to predict software defect.

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 39

Yang et al. (2014) proposed a new approach of

learning to rank using the rank task. The study used 11

different types of Dataset such as Eclipse, Lucene,

Mylyn, PDA and other data. The study used different

method (RF, RP, BART, NBR, ZINBR, ZIPR, HNBR,

and HPR) to Compare the results for the

11-datasetsusing three different metrics. The study used

10 Cross-Validation. The result showed two benefits (1)

learning to rank just do rank defects and does not need

to predict defects for each module (2) these expected

numbers were used to predict which modules are more

flawed than others in project. Wang et al. (2013) ex-

amined the problem of imbalance distribution, which

may be a problem or can help to predict defect in soft-

ware; through using 10 datasets from PROMISE; each

one of these datasets has different number of features,

different language and has a different percent of defect.

This Dataset uses in different techniques in two

top-ranked predictors machine learning. Naive Bayes

and Random Forest and compare the result with other

techniques PD, PF, balance, G-mean and AUC. The

result showed that the balance and G-mean is the best

result, which mean that it could use the imbalance dis-

tribution to help in predict defect.

Hassan (2009) used predict the defect of program

based on the change cod of complexity. There are many

processes that can be associated with code change, in-

cluding the pattern of source code modification, rec-

orded by the source control systems, and a log that

saves all dates that have been changed. Statistical Lin-

ear Regression (SLR Model) was built to predict faults

in subsystem. Different models and different applica-

tion were used. The result showed that complex code

change process negatively affects the software system,

and the more complex changes to a file, the higher the

chance the file will contain fault.

3. Datasets

To evaluate the effectiveness of defect prediction,

we are conducting experiments on a set of data availa-

ble on the PROMISE website and which have been

collecting data from NASA. The data from NASA

come from different project. These public datasets in-

clude the information on space craft instrumentation,

satellite flight control, and ground data for storage

management. In this research we will use six public

datasets that are most widely used in among research-

ers from this repository (CM1, JM1, KC1, PC1,

Class-level data for KC1version 1 and Class-level data

for KC1 Version 2). Each of these datasets possesses

several software modules with input as the quality met-

rics. the outputs of each models are whether the pro-

gram is defective or non- defective. The features are

divided into two main parts: McCabe and Halstead

measure. This measure defines "modules" as the

smallest functional units. All these datasets were de-

veloped in either C or C++ language as shown in Table

1. From Table 2, can be noted that, for all the consid-

ered six datasets, JM1, CM1, KC1 and PC1 have 22

attributes. Each of this Dataset have been including one

output attributes which represent the goal of filed (de-

fect as 1, non-defect as 0) other attributes represent the

quality metrics for the project acting as input attributes.

These attributes can be classified in to McCabe metrics,

9 Halstead measures, and 8 are derived Halstead

measures.

Table 1. Summary of Dataset

Dataset # Attributes # instances #defected Language

JM1 22 10855 80.65% C

CM1 22 498 9.83% C

KC1 22 522 20.5% C++

PC1 22 1109 93.05% C

Class-level KC1 ver1 95 145 - C++

Class-level KC1 ver2 95 145 - C++

Table 2. The summary of code metrics

Quality metrics Description

loc (v) line count of code

v (g) Cyclomatic complexity

ev (g) Essential complexity

iv (g) Design complexity

loCode line count

loComment Count of lines of comments

loBlank Count of blank lines

loCodeAndComment Count of code and comment lines

uniq_Op Unique operators

uniq_Opnd Unique operands

total_Op Total operators

total_Opnd Total operands

branchCount Branch count of the flow graphs

n total operators + operands

v Volume

l Program length

d Difficulty

i Intelligence

t Time estimator

Defect True/False

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 40

4. Research Methodology

In this paper, we will be exploring a solution to predict

the defect in software using Support Vector Machine

(SVM) with different kernel functions. The datasets

that will be used are taken from NASA metrics Data

Program, the number of features is 22 (4 McCabe met-

rics, 9 base Halstead measures, 8 derived Halstead

measures and defect variable as output) as discussed

before. Before using the Dataset, the Dataset will be

pre-processed and cleaned by handling missing values

and outliers. The datasets are divided to training and

testing data. In Software Defect Predication (SDP) the

selection of training data and testing data will be done

in two different ways; the first one, in the same Dataset

will be choosing the training and testing data randomly

(or may be sequential). In second one, the training will

be taking from Dataset as previous version and the

testing data will be taking from another dataset as next

version. We will use the first approach. The data will

be handled and cleaned before running experiments.

The proposed models will be validated using 10-cross

validation. After that, the SVM with different kernel

functions will be examined. The last step, the results

will be compared and evaluated using classification

accuracy measures such as: Recall, Precision, Classifi-

cation Accuracy, and Balance. The tools that will be

used are Rapid Miner for the implementation of our

proposed solution. The accuracy of each model will be

measured by the common accuracy measures: Recall,

Precision, accuracy, Specificity, F-measure and Bal-

ance. Software Defect Prediction (SDP) detectors can

be assessed according to confusion matrix or Error

matrix: is a table used to describe the performance of

classification model on a set of test data for which the

true values are known. It is showed the number of cor-

rect and incorrect prediction, where is summarized

with count values and broken down by each class. This

is the key to the confusion matrix as shown in Table 3

Shepperd et al. (2014).

Table 3. Confusion Matrix

 Predicted as defective Predicted as non-defective

defective TP FN

Non defective FP TN

Where TP is True positive which means correctly clas-

sified as defective module. TN is True negative which

means correctly classified as non-defective module. FP

is False positive which means classifies non-defective

module as defective module, and FN is False negative

which means classifies defective module as

non-defective module.

To correctly identify a defective prediction, the "Preci-

sion" is used to determine the defective prediction rate,

or the extent of the prediction is originally defective, or

not. Recall is also called sensitivity, probability of de-

tection (pd), or true positive rate (TPR). There are also

many measures called probability of false alarm (pf) or

false positive rate (FPR) which suggests the percentage

of false defective predictions. Based on what has al-

ready, an optimal predictor should achieve TPR (pd) is

1, FPR (pf) is 0 and the Precision is 1. When the TPR

and FPR are plotted, the result in Receiver Operating

Characteristics (ROC) curve and from ROC the area

under the curve (AUC) is to be measured. AUC is

measured between 0 and 1, with 1 being the optimal

solution point. Table 4 presents performance measures

(Shepperd et al. (2014)). The, the data must be cleaned

from missing value and outliers. The existing of miss-

ing values and outliers hinder the success of building

accurate learning models therefore researchers sug-

gested using some statistical tool to ignore these outli-

ers such as boxplot. The missing values can be handled

by either replacing them with the feature average of

ignoring them. In this paper we ignore missing values

because they are a few. The proposed algorithm must

be validated using robust validation procedure such as

cross validation and bootstrapping. During validation

procedure the data is divided into training and testing

subsets and training data is entered to learning the

model while the testing data is used to evaluate accu-

racy of the model.

5. Experimental Results

This section presents the results of the experiment

study, which has been conducted to validate our mod-

ule. The evaluation has been performed on Support

Vector Machine (SVM) with different Kernel functions,

using public datasets obtained from PROMISE data

repository as described in Dataset section. To evaluate

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 41

the performance of each proposed model, used

10-Folds cross-validation approach. This procedure

divides the datasets randomly into 10-fold equal size

subsets, where in each fold 9 subsets are used for

training and one subset is used for testing. This process

is repeated 10 times until all subsets act as testing data

as described in section 3. In each experiment SVM

model with different kernel function is constructed

under two perspectives: using all features and using

feature subset selected by PCA technique. Furthermore,

six kernel functions were used: Linear, Quadratic, Cu-

bic, Gaussian, RBF, Sigmoid.

Table 4. Performance measures

metric Definition of the measure

Sensitivity

Precision

False positive rate

Specificity

Accuracy

Balanced Accuracy

5.1 CM1 Dataset Result

It can be noted from Table 5 that the Recall and Preci-

sion values are unacceptable for all kernel functions

because their values are close to zero. Specificity val-

ues are very good for all kernel functions, with rela-

tively similar values. Balance values are not very bad

with a range between (0.29 - 0.4). Accuracy values are

very good, as almost 90% of all kernel functions are

good. TRP and FPR values are unacceptable for all

kernel functions because they are nearly zero. "Area

Under Curve" is acceptable for all kernel functions

ranging from (0.50 - 0.64). With respect to all perfor-

mance results, better solutions are observed for the

Quadratic kernel function than the other five kernel

functions with all features in the CM1 Dataset.

Table 5. Performance results of the SVM kernel functions on

CM1 Datasets, using all Features.

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.62

Quadratic 0.16 0.42 0.98 0.41 0.90 0.16 0.02 0.64

Cubic 0.16 0.22 0.94 0.41 0.86 0.16 0.07 0.61

Gaussian 0.00 0.02 1.00 0.29 0.90 0.00 0.00 0.57

RBF 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.50

Sigmoid 0.08 0.29 0.98 0.35 0.89 0.08 0.00 0.53

Table 6. Performance results of SVM kernel functions on

CM1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.44

Quadratic 0.18 0.41 0.97 0.42 0.89 0.18 0.03 0.71

Cubic 0.20 0.28 0.94 0.44 0.90 0.00 0.00 0.66

Gaussian 0.00 0.03 1.00 0.29 0.90 0.00 0.00 0.63

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50

Sigmoid 0.10 0.19 0.95 0.36 0.87 0.10 0.05 0.53

It can be noted from Table 6 that the Recall and Preci-

sion values are unacceptable for all kernel functions;

specificity values are very good for all kernel functions,

with similar values. Balance values are not very bad

with a range between (0.29 - 0.4). For all kernel func-

tions with a range between (0.86 - 0.95) the accuracy

values are so good. TRP and FPR values are unac-

ceptable for all kernel functions, because they're almost

zero. With all kernel functions with a range between

(0.50 - 0.71) the values "Area Under Curve" are ac-

ceptable. With respect to all performance results, better

solutions are observed for the Quadratic kernel func-

tion than the other five kernel functions considered

with selected features in the CM1 Dataset. It was little

improvement in all performance results when using

selected features in CM1 Dataset. This is because of

the features selected that were used.

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 42

5.2 KC1 Dataset Result

From Table 7 we can note that for all kernel func-

tions the Recall values and Precision values are ac-

ceptable. Specificity values are generally good, as they

are almost 96% for all kernel functions, with the ex-

ception for Sigmoid kernel that obtained of the 86%.

Balance values with a range of (0.32 -0.55) are fairly

good. The accuracy values for all kernel functions are

relatively good with range between (0.78 - 0.84); TRP

values are acceptable for all kernel functions except for

the Cubic kernel function. FPR values for all kernel

functions are unacceptable, as they are almost zero.

"Area Under Curve" values for all kernel functions

with a range between (0.66 - 0.81) are acceptable. With

respect to all performance results, better solutions are

observed for the RBF kernel function than the other

five kernel functions considered with all features in the

KC1 Dataset.

Table 7. Performance results of SVM kernel functions on

KC1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.36 0.75 0.97 0.54 0.84 0.36 0.03 0.81

Quadratic 0.37 0.69 0.96 0.56 0.84 0.37 0.04 0.73

Cubic 0.37 0.54 0.97 0.55 0.81 0.37 0.08 0.67

Gaussian 0.37 0.74 0.97 0.56 0.85 0.37 0.03 0.77

RBF 0.36 0.70 0.96 0.54 0.84 0.36 0.04 0.66

Sigmoid 0.46 0.46 0.86 0.33 0.78 0.46 0.14 0.66

From Table 8 we can note that the values Recall

and Precision are acceptable for all functions of the

kernel. All kernel functions have very good specificity

values, with a range between (0.85 - 0.97). Balance

values with a range between (0.31 - 0.49) are accepta-

ble. Accuracy values are so good for all kernel func-

tions; as they are close to 84% except for RBF is 77%.

For all kernel functions, TRP values are acceptable;

FPR values are unacceptable, as for all kernel functions

they are almost at zero. For all kernel functions with a

range between (0.65 - 0.83) the values "Area Under

Curve" are acceptable. With respect to all performance

results, better solutions are observed for the Quadratic

kernel function than the other five kernel functions

considered with selected features in the KC1 Dataset.

When the selected features used in KC1 Dataset,

all performance results were not improved except for

Area Under Curve. This is because of the selected fea-

tures that have been used, and we do not know how the

mechanism of selection entities in cross-validation.

Table 8. Performance results of SVM kernel functions on

KC1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.36 0.79 0.98 0.54 0.85 0.36 0.02 0.83

Quadratic 0.40 0.72 0.96 0.58 0.85 0.40 0.04 0.73

Cubic 0.43 0.62 0.93 0.59 0.83 0.43 0.07 0.65

Gaussian 0.36 0.68 0.96 0.55 0.84 0.36 0.04 0.69

RBF 0.35 0.66 0.95 0.54 0.83 0.35 0.05 0.65

Sigmoid 0.44 0.44 0.86 0.33 0.77 0.44 0.14 0.65

5.3 PC1 Dataset Result

From Table 9 it can be noted that the Recall values

for all kernel functions are Totally unacceptable. Preci-

sion values for all kernel functions are acceptable, ex-

cept the value for the Sigmoid kernel function. Speci-

ficity values for all kernel functions are very good as

they are close to 96 %. Balance values with a range of

(0.31- 0.49) are acceptable. Accuracy values are good

for all functions of the kernel; since they are close to

91%. TRP values are unacceptable, as they are almost

zero for all kernel functions with the exception of the

Cubic kernel. FPR values are insufficient for all kernel

functions, because they are almost zero. "Area Under

Curve" values for all kernel functions with a range be-

tween (0.53 - 0.73) are acceptable. With respect to all

performance results, better solutions are observed for

the Cubic kernel function than the other five kernel

functions considered with all features in the PC1 Da-

taset.

From Table 10 it can be noted that the Recall val-

ues for all kernel functions are totally unacceptable.

Except for the Sigmoid and Cubic kernel functions,

precise values are acceptable for all kernel functions.

Specificity values are very good for all kernel functions;

with the exception of Cubic kernel function, they are

close to 97%. Balance values with a range of (0.31 -

0.49) acceptable. For all kernel functions, accuracy

values are so good; with a range between (0.90 - 0.93)

except for the Cubic kernel function, it is 77%. TRP

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 43

and FPR values are unacceptable, because they are

almost zero for all functions of the kernel except for

the Cubic kernel. "Area Under Curve" values for all

kernel functions with a range between (0.51 - 0.75) are

acceptable. With respect to all performance results,

better solutions are observed for the Gaussian kernel

function than the other five kernel functions considered

with selected features in the PC1 Dataset. There was no

improvement in all per-formance results except in ac-

curacy when we used selected features in the PC1 Da-

taset. This is due to a function of the kernel, the select-

ed features that were used and we don't know how the

process of selection entities in cross-validation.

Table 9. Performance results of SVM kernel functions on

PC1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.03 0.67 1.00 0.31 0.93 0.03 0.00 0.70

Quadratic 0.13 0.32 0.98 0.39 0.92 0.13 0.02 0.68

Cubic 0.29 0.39 0.97 0.49 0.92 0.29 0.03 0.67

Gaussian 0.08 0.55 1.00 0.35 0.93 0.08 0.01 0.73

RBF 0.08 0.67 1.00 0.35 0.93 0.08 0.00 0.54

Sigmoid 0.05 0.13 0.98 0.33 0.91 0.05 0.03 0.53

Table 10. Performance results of SVM kernel functions on

KC1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.20 0.71 0.98 0.42 0.95 0.20 0.00 0.75

Quadratic 0.12 0.43 0.99 0.38 0.93 0.12 0.01 0.63

Cubic 0.40 0.10 0.83 0.50 0.75 0.48 0.22 0.55

Gaussian 0.10 0.67 1.00 0.35 0.93 0.13 0.00 0.69

RBF 0.08 0.72 1.00 0.37 0.93 0.11 0.00 0.53

Sigmoid 0.07 0.16 0.97 0.35 0.91 0.07 0.03 0.51

5.4 JM1 Dataset Result

It can be noted from Table 11 that the Recall val-

ues are unacceptable for all kernel functions except for

the Cubic kernel function; it is 77%. Precision values

are acceptable for all functions of the kernel except the

functions Sigmoid and RBF kernel. Specificity values

are very good, as they are similar to one% of Linear,

Quadratic, and Gaussian kernel functions, becoming

nearly 90 % of RBF kernel functions and unacceptable

for Cubic and Sigmoid kernel functions. Balance val-

ues with a range of (0.21 - 0.36) are acceptable. For

linear, quadratic, and Gaussian kernel functions, accu-

racy values are so good; as they are close to 81 percent,

but unacceptable in the functions of Cubic, RBF, and

Sigmoid. For all kernel functions except the Cubic

kernel function, TRP and FPR values are unacceptable

because they are nearly zero. "Area Under Curve" val-

ues are acceptable for all kernel functions with a range

between (0.51 - 0.75). expect for cubic kernel function.

With respect to all performance results, better solutions

are observed for the Gaussian kernel function than the

other five kernel functions with all features considered

in the JM1 Dataset. It can be noted from Table 12 that

the Recall values are unacceptable for all kernel func-

tions except for the Cubic and Quadratic kernel func-

tions, 40% and 61% are in order. Precision values are

acceptable for all functions of the kernel, with the ex-

ception of Cubic and Quadratic functions. Specificity

value is very good, as it is close to one for Linear, RBF,

and Gaussian kernel functions, as it is close to 82% for

Sigmoid kernel function and unacceptable for Cubic

and Quadratic kernel functions. Balance values with a

range of (0.29 - 0.49) are not that bad. Accuracy values

are so good for linear, RBF kernel functions as they are

nearly 81%. In Sigmoid kernel function is 77% unac-

ceptable in Cubic, Quadratic, and Gaussian kernel

function. TRP and FPR values are unacceptable for all

kernel functions except for the Cubic and Quadratic

kernel functions, as they are almost zero. "Area Under

Curve" values are acceptable for all kernel functions

with a range between (0.50 - 0.63) expect for Quadratic

kernel function. With respect to all performance results,

better solutions are observed for the RBF kernel func-

tion than the other five kernel functions considered

with selected features in the JM1 Dataset. It was im-

provement when selected features used in JM1 Dataset,

and no improvement in all performance. This is due to

a function of the kernel, the selected features that were

used and we don't know how the process of selection

entities in cross-validation.

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 44

Table 11. Performance results of SVM kernel functions on

JM1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.02 0.71 1.00 0.31 0.81 0.02 0.00 0.65

Quadratic 0.09 0.54 0.98 0.36 0.81 0.09 0.02 0.64

Cubic 0.76 0.19 0.21 0.21 0.32 0.76 0.79 0.48

Gaussian 0.10 0.61 0.99 0.37 0.81 0.10 0.02 0.62

RBF 0.01 0.34 0.90 0.30 0.18 0.01 0.10 0.55

Sigmoid 0.06 0.28 0.59 0.27 0.19 0.06 0.41 0.54

Table 12. Performance results of SVM kernel functions on

JM1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.01 0.63 1.00 0.30 0.81 0.01 0.00 0.63

Quadratic 0.62 0.18 0.32 0.45 0.38 0.62 0.68 0.45

Cubic 0.41 0.20 0.60 0.49 0.56 0.41 0.40 0.50

Gaussian 0.09 0.60 0.96 0.35 0.58 0.09 0.04 0.59

RBF 0.08 0.58 0.99 0.35 0.81 0.08 0.01 0.53

Sigmoid 0.34 0.32 0.83 0.52 0.73 0.34 0.17 0.58

5.5 Class-Level Data for KC1 v1 Dataset Result

From Table 13, it can be noted that the Recall

values are acceptable for all kernel functions except the

RBF and sigmoid kernel functions as they are nearly

zero. Precision values are acceptable for all kernel

functions except the RBF and sigmoid kernel functions,

as they are nearly to zero. Specificity values are very

good, as they are near to one for RBF and Sigmoid

kernel functions, other Kernels with rang between

(0.66 -0 .83). Balance values are very good, as they are

nearly to 77% except in RBF and Sigmoid kernel func-

tions. Accuracy values are good as they are nearly to

77% in all kernel functions expect unacceptable in RBF,

Sigmoid kernel functions. TRP values are good as they

are nearly to 80% for all kernel functions except for the

Sigmoid and RBF kernel functions. FBR values are

unacceptable as they are nearly to zero for all kernel

functions except for the Cubic, Linear and Quadratic

kernel functions. "Area Under Curve" values are ac-

ceptable within the range between (0.50 - 0.84) for all

kernel functions. For all performance results, better

solutions are observed for the Gaussian kernel function

than the other five considered kernel functions in the

KC1version 1 dataset class-level data with all features.

Table 13. Performance results of SVM kernel functions on

KC1 v1 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.82 0.81 0.73 0.77 0.79 0.82 0.27 0.84

Quadratic 0.85 0.78 0.67 0.74 0.77 0.85 0.33 0.81

Cubic 0.79 0.77 0.67 0.72 0.74 0.79 0.33 0.79

Gaussian 0.75 0.87 0.83 0.79 0.79 0.75 0.02 0.83

RBF 0.00 0.00 1.00 0.00 0.43 0.00 0.00 0.50

Sigmoid 0.00 0.00 0.97 0.29 0.00 0.03 0.41 0.51

Table 14. Performance results of SVM kernel functions on

KC1 v1 Datasets, using PCA
K

ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.84 0.70 0.48 0.62 0.39 0.84 0.52 0.77

Quadratic 0.78 0.70 0.52 0.62 0.67 0.78 0.48 0.67

Cubic 0.71 0.71 0.58 0.64 0.66 0.71 0.42 0.65

Gaussian 0.90 0.69 0.40 0.57 0.70 0.90 0.60 0.08

RBF 0.70 0.65 0.73 0.71 0.72 0.70 0.27 0.71

Sigmoid 0.43 0.68 0.86 0.59 0.68 0.43 0.14 0.65

From Table 14, it can be noted that for all kernel

functions the Recall values and Precision values are

acceptable. For all kernel functions, specificity values

are unacceptable, except for functions in the Sigmoid

and RBF kernels. Balance values with a range of (0.57

- 0.71) are very good. Accuracy values are good for all

kernel functions because they are nearly 66%. All ker-

nel functions are good at the TRP and FBR values.

"Area Under Curve" values are acceptable with a range

of (0.65 - 0.80) for all kernel functions. For all perfor-

mance results, better solutions are observed for the

Gaussian kernel function than the other five considered

kernel functions in the KC1version 1 dataset class-level

data with selected features. Dataset used in class-level

data were improved in Recall, Precision, Balance, TPR

and FPR, there was no improvement in Area Under

Curve and another performance was getting bad in-

cluding Specificity and Accuracy. It is due to a function

of the kernel, the selected features that were used and

we don't know how the mechanism of selection entities

in cross-validation.

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 45

5.6 Class-Level Data for KC1 version 2 Dataset

Result

From Table 15, it can be noted that for all kernel

functions, the Recall values are nearly 100%, except

for the sigmoid and RBF kernel functions, as they are

close to zero. Precision values are so good because the

majority values are close to 95% in order for all kernel

functions except RBF and sigmoid kernel functions.

Specificity values are unacceptable because for all

kernel functions, they are close to zero except for the

Sigmoid and RBF kernels; they are 100% and 87% in

order. Balance values with a range between (0.29-0.38)

are not that bad, except for functions in the RBF and

Sigmoid kernel, because they are nearly zero. The ac-

curacy values are so good that they are near to 94 per-

cent for all kernel functions except RBF, that it's nearly

zero. TRP and FPR values are as good as similar to one

for all kernel functions with the exception of the RBF

and Sigmoid kernel functions, as they are nearly zero.

"Area Under Curve" values are acceptable with a range

between (0.50 - 0.74) Cubic, Sigmoid, and RBF kernel

function, and other kernels are near to one. With re-

spect to all performance results, better solutions are

observed for the Gaussian kernel function than the oth-

er five kernel functions considered in the KC1version 2

dataset class-level data with all features.

From Table 16, it can be noted that the Recall

values are nearly to one for all kernel functions except

the sigmoid and RBF kernel functions, as they are near

to zero. Precision values are so good that for all kernel

functions, except for RBF and sigmoid kernel functions,

they are close to 97%,

because they are nearly zero. Specificity values

are unacceptable because they are nearly zero for all

kernel functions, except for the Sigmoid and RBF ker-

nels, as they are near to one, and in the Cubic kernel

function, they are 50%. With a range of (0.29-0.47),

balance values are acceptable except for Cubic and

Quadratic kernel functions, as they are close to 64 %.

TRP values are as good as near to one for all kernel

functions except for the RBF and Sigmoid kernel func-

tions as near to zero%. With the exception of the RBF

and Sigmoid kernel functions, FPR values are so good

with a range of (0.50 - 1.0) because they are close to

zero %. "Area Under Curve" values are acceptable for

the feature of the Sigmoid and RBF kernels, as they are

nearly 50% other kernels, they are almost 85%. For all

performance results, better solutions are ob-served for

the Gaussian kernel function than the other five kernel

functions considered in the KC1version 2 dataset

class-level data with all features.

The comparison of the proposed classifier with the

Support Vector Machine (SVM) with different kernel

functions applied for the same NASA datasets in terms

of the performance metrics: sensitivity, specificity,

probability of false alarm, balance, accuracy, and area

under the curve. The results were different within the

Dataset because each Dataset has a different number of

entities, some data have 125 such as KC1version 2

class-level data, other datasets have 10,000 entities and

this affects the cross-validation selection process. For

some datasets the selected features perform better in

the same Dataset and in other datasets there is no im-

provement at all.

Table 15. Performance results of SVM kernel functions on

KC1 v2 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.99 0.95 0.13 0.38 0.95 0.99 0.88 0.93

Quadratic 0.99 0.95 0.13 0.38 0.95 0.99 0.88 0.92

Cubic 0.97 0.95 0.13 0.38 0.92 0.97 0.88 0.74

Gaussian 1.00 0.95 0.00 0.00 0.95 1.00 1.00 0.89

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50

Sigmoid 0.01 0.50 0.88 0.08 0.06 0.01 0.13 0.51

Table 16. Performance results of SVM kernel functions on

KC1 v2 Datasets, using PCA

K
ernel

R
ecall

P
recision

S
pecificity

B
alance

A
ccuracy

T
P

R

F
P

R

A
U

C

Linear 0.99 0.96 0.25 0.47 0.95 0.99 0.75 0.81

Quadratic 0.99 0.97 0.50 0.65 0.96 0.99 0.50 0.85

Cubic 0.99 0.97 0.38 0.64 0.96 0.99 0.63 0.83

Gaussian 1.00 0.95 0.00 0.29 0.95 1.00 1.00 0.83

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50

Sigmoid 0.00 0.00 0.99 0.29 0.94 0.00 0.01 0.50

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 46

6. Conclusion

Software Defect Prediction is a vital task during

software development to help testing team to focus on

defect proneness modules. To support that, various

machine learning methods have been used to build

models that can predict faulty modules based on da-

tasets collected from software industries. Among them,

Support vector machine has shown good performance

for this problem, but there are no prior studies exam-

ined the performance of kernel functions for defect

prediction problem. Thus, this research we will exam-

ine the performance of support vector machine with

different kernel functions over different datasets col-

lected from software data repositories. The results

demonstrate that there is no kernel function that can

give stable performance across different experimental

settings. In addition, the use of feature subset selection

using PCA did improve accuracy of kernel functions

over some datasets. In CM1 Dataset, better solutions

are observed for the Quadratic kernel function than the

other five kernel functions with all and selection fea-

tures. In KC1 Dataset, better solutions are observed for

the RBF kernel function than the other five kernel

functions with all and selection features. In PC1 Da-

taset, better solutions are observed for the Cubic kernel

function than the other five kernel functions considered

with all features, but when select some features, the

better solutions are observed for the Gaussian kernel

function than the other five kernel functions. In JM1

Dataset, better solutions are observed for the Gaussian

kernel function than the other five kernel functions

with all features, but when select some features, better

solutions are observed for the RBF kernel function than

the other five kernel functions. In Class-level data for

KC1version 1 dataset, better solutions are observed for

the Gaussian kernel function than the other five con-

sidered kernel functions in all and selected features. In

in the KC1version 2 dataset class-level Dataset better

solutions are observed for the Gaussian kernel function

than the other five kernel functions considered with all

and selected features. The results were different within

the Dataset because each Dataset has a different num-

ber of entities, some data have 125 such as KC1version

2 class-level data, other datasets have 10,000 entities

and this affects the cross-validation selection process.

For some datasets the selected features perform better

in the same Dataset and in other datasets there is no

improvement at all.

Acknowledgements

The authors are grateful to the Applied Science Private

University, Amman, Jordan, for the financial support granted

to cover the publication fee of this research article.

References

Bowes, D., Hall, T & Petrić, J. (2018). Software defect

prediction: do different classifiers find the same

defects, Software Quality Journal.

Ni, C., Liu, W.-S., Chen, X. Gu, Q. & Xu, Dao- (2017).

A Cluster Based Feature Selection Method for

Cross-Project Software Defect Prediction .

Wong, C. & Vateekul, P. (2015). Software defect pre-

diction in imbalanced data sets using unbiased

support vector machine., InInformation Science and

Applications.

Ryu, D.. Jang, J.-I. & Baik, J. (2015). A Hybrid In-

stance Selection Using Nearest-Neighbor for

Cross-Project Defect Prediction.

D. Ryu, O. Choi, & J. Baik, (2016). Value-cognitive

boosting with a support vector machine for

cross-project defect prediction, Empir. Softw. Eng.,

vol. 21, no. 1, pp. 43–71, Feb. 2016. doi:

10.1007/s10664-014-9346-4.

H. A. Al-Jamimi & L. Ghouti, (2011). Efficient predic-

tion of software fault proneness modules using

support vector machines and probabilistic neural

networks, 2011 5th Malaysian Conf. Softw. Eng.

MySEC 2011, no. December 2011. pp. 251–256,

2011, doi: 10.1109/MySEC.2011.6140679.

H. Wei, C. Hu, S. Chen, Y. Xue, & Q. Zhang, (2019).

Establishing a software defect prediction model via

effective dimension reduction, Inf. Sci. (Ny)., vol.

477, pp. 399–409, Mar. 2019.

Hassan AE, (2009). Predicting faults using the com-

plexity of code changes, 2009 IEEE 31st interna-

tional conference on software engineering, 16 May

2009.

He P, Li B, Liu X, Chen J & Ma Y, (2015). An empiri-

cal study on software defect prediction with a sim-

plified metric set, Information and Software Tech-

nology, 1 March 2015.

Huda, S., Alyahya, S., Ali, MM, Ahmad, S & Abawajy

J, (2017). A framework for software defect predic-

tion and metric selection, IEEE access, 27 Dec.

2017.

 H. A. Alhija, M. Azzeh, etc / Int. J. Systematic Innovation, 7(2), 37-47 (2022)

 47

Kumudha, P & Venkatesan, R, (2016). Cost-sensitive

radial basis function neural network classifier for

software defect prediction, The Scientific World

Journal, 1 Jan 2016.

Li, H. (2011). A short introduction to learning to rank,

IEICE TRANSACTIONS on Information and Sys-

tems., 1 Oct 2011.

Li, M., Zhang, H., Wu, R. & Zhou, ZH. (2012). Sam-

ple-based software defect prediction with active and

semi-supervised learning., Automated Software

Engineering, 1 Jun 2012.

Okutan, A. & Yıldız, OT. (2014). Software defect pre-

diction using Bayesian networks., Empirical Soft-

ware Engineering, 1 Feb 2014.

Shepperd, M., Bowes, D & Hall, T. (2014). Researcher

bias: The use of machine learning in software de-

fect prediction, IEEE Transactions on Software En-

gineering, 3 Jun 2014.

Son, LH, Pritam, N, Khari, M., Kumar, R., Phuong, PT

& Tho, (2019). Empirical study of software defect

prediction: A systematic mapping, Symmetry, Feb

2019.

Sun, Z, Song, Q & Zhu, X. (2012). Using coding-based

ensemble learning to improve software defect pre-

diction, IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 21

Dec 2012.

Tosun, A., Bener, A. & Kale, R. (2010). Ai-based soft-

ware defect predictors: Applications and benefits in

a case study., Twenty-Second IAAI Conference, 5

Jul 2010.

Wang, S. & Yao, X. (2013). Using class imbalance

learning for software defect prediction, IEEE

Transactions on Reliability, pp. 434-443, 26 April

2013.

Chen, X., Zhang, D., Cui, Z.-Q., Gu, Q., Ju, X.-L. &

Share, D. (2019). Privacy-Preserving Software De-

fect Prediction Model Sharing Through Differential

Privacy, Journal of Computer Science and Tech-

nology, 2019.

Yang, X., Tang, K. & Yao, X. (2014). A learn-

ing-to-rank approach to software defect prediction,

IEEE Transactions on Reliability, 23 Dec 2014.

Xu, Z., Pang, S., Zhang, T., Luo, X.-P. & Li, J. (2019).

Cross Project Defect Prediction via Balanced Dis-

tribution Adaptation Based Transfer Learning,

Journal of Computer Science and Technology,

2019.

AUTHOR BIOGRAPHIES

Haneen Abu Alhija is Master student pursuing MSc in

computer Science at Applied Science Private Universi-

ty. His research interests include Machine learning and

data mining.

Mohammad Azzeh is a full professor at the Depart-

ment of Data Science at Princess Sumaya University

for Technology. He earned his PhD in Computing from

University of Bradford in 2010, Bradford, UK. M.S.C

in Software Engineering from University of the West of

England, Bristol, UK. Dr. Mohammad has published

over 50 research articles in reputable journals and con-

ferences such as IET Software, Software: Evolution &

Process, Empirical Software Engineering and Systems

& Software. His research interests focus on Software

Cost Estimation, Empirical Software Engineering, Data

Science, Mining Software Repositories, Machine

Learning for Software Engineering Problems. Dr. Mo-

hammad was Conference chair of CSIT2016 and

CSIT2018, and he is co-chair of many IT-related

workshops.

Fadi Almasalha is an associate professor at the De-

partment of computer Science in the Faculty of Infor-

mation Technology at Applied Science University. He

has published over 20 research articles in reputable

journals and conferences. His research interests focus

on Machine learning, Smart Systems, Data Science and

IOT.

