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Abstract 

Software defect prediction is an essential task during the software development Lifecycle as it can help man-

agers to identify the most defect-proneness modules. Thus, it can reduce the test cost and assign testing re-

sources efficiently. Many classification methods can be used to determine if the software is defective or not. 

Support Vector Machine (SVM) has not been used extensively for such problems because of its instability 

when applied on different datasets and parameter settings. The main parameter that influences the accuracy is 

the choice of the kernel function. The use of kernel functions has not been studied thoroughly in previous pa-

pers. Therefore, this research examines the performance and accuracy of SVM with six different kernel func-

tions. Various public datasets from the PROMISE project empirically validate our hypothesis. The results 

demonstrate that no kernel function can give stable performance across different experimental settings. In ad-

dition, the use of PCA as a feature reduction algorithm shows slight accuracy improvement over some da-

tasets. 
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1. Introduction 

Predicting defect-prone modules during the soft-

ware development process is crucial because it helps 

the quality assurance team put more effort into modules 

with a high probability of defect-proneness. It also 

helps the management team assign and distribute re-

sources efficiently during testing, thus reducing devel-

opment costs (Wang and Yao (2013), Xu et al. (2019)). 

The process of manually reviewing the code usually 

leads to a detection rate between 35% - 60% in most 

cases, but this rate is in-creased when defect prediction 

tools are used. Furthermore, the time needed to detect 

defect-proneness modules is reduced (Tosun (2010)). 

Software Defect Prediction (SDP) is performed by 

extracting static code metrics from bug log files of pre-

vious versions of the program, then using these static 

metrics for building models to predict the possible de-

fects in future releases of the program (Wang and Yao 

(2013), Yang et al. (2014)). This process helps detect 

the location of the parts of the program that are likely 

to induce defects. It is used in a software system with a 

limited project budget or too large to be tested ex-

haustively. SDP can be primarily used in two ways: 

within a project or cross-project. The first approach 

implies using the same data as training and testing 

during the empirical validation process. In the second 

approach, one release of the project data is used as 

training, and the subsequent release is used as testing. 

Both approaches are acceptable and depend on data 

availability (Lie et al. (2012)).  

Any SDP model comprises four main elements:1) 

independent features representing static code metrics, 2) 

output features representing the presence of a defect or 

its absence. 3) The learning approach, and finally 4) the 

performance measures that are used to judge the accu-

racy of the built learning model (Huda (2017)). The 

current studies on SDP models focus on four research 

aspects. The first aspect examines the importance of-

static code metrics for defect prediction and which 

metrics are more predictive than others (Lie et al. 

(2012), Bowes et al. (2018), He et al. (2015), Okutan 

and Yildiz (2014). The second aspect focus on building 
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defect prediction models from within data or across 

data (Son et al. (2019)). The third aspect studies the 

effect of imbalanced data on the accuracy of defect 

prediction models (Wang and Yao (2013), Choei-

kiwong and Vateekul (2015), Sheppered et al. (2014), 

Sun et al. (2012)). Finally, the fourth aspect focuses on 

using ranking techniques to predict the correct rank of 

the defected modules based on their number of defects 

(Yang et al. (2014), Li (2011)). This study focuses on 

the second research aspect and attempts to study the 

performance of support vector machine with different 

kernel techniques for software defect prediction prob-

lems. Support Vector Machine (SVM) is an efficient 

machine leaning method that is suited for classification 

problems, as in our case (Hassan (2009), Kumudha and 

Venkatesan (2016), Chen et al. (2019)). The SVM has 

not been studied thoroughly in previous papers because 

of the instability of its accuracy over multiple datasets 

and it is easily influence by the choice of kernel func-

tions (Ni et al. (2017), Ryu et al. (2019), Wei et al. 

(2019)). This study attempts to bridge that research gap. 

Different Kernel functions will be used to test the ac-

curacy of SVM for defect prediction problems 

(Al-Jamimi and Ghouti (2011), Ryu et al. (2016)). This pa-

per aims to study the impact of different Kernel func-

tions in support vector machine for the problem of 

software defect prediction. Six public datasets will be 

used to empirically validate and test our hypothesis and 

assumptions. These datasets were obtained from 

PROMISE data repository. 

The rest of paper is structured as follows: Section 

2 presents related work. Section 3 presents datasets. 

Section 4 shows methodology of our research. Section 

5 presents results and discussion. Finally, section 6 

presents conclusion. 

2. Related Work 

Sheppard et al. (2014) examined the factors that 

affect the prediction of software defects. 42 studies out 

of 600 studies were used for the meta-analysis. The 

challenges were examined by the NOVA model so that 

the prediction process was divided into the groups: (1) 

Classifier family: in this group, the defect prediction 

techniques were divided to 7 main sections; Decision 

Tree, Recognition, SVM, Neural Network (ANN), Na-

ive Bayes, CBR, Search and Benchmark. (2) Data set 

family: In this group, the Dataset had been divided into 

24 this group, the Dataset had been divided into change 

or static metrics. (4) Researcher Group: There are two 

clusters of researchers; the most significant cluster is 

8-10 researchers. The meta-analysis revealed strong 

evidence that current experiments in predicting defects 

are in-adequate and ineffective. Okutan et al. (2014) 

used Bayesian Network to find the relationships among 

metrics and defect proneness in different datasets. The 

PROMISE data repository used many public datasets 

for this experiment, such as Ant, Tomcat, Jedit, Veloci-

ty, Synapse, Poi, Lucene, Xalan, and Ivy. The static 

metrics used were LOC, CBO, LOCQ, WMC, RFC, 

LCOM, LCOM3, DIT, and NOC. Each of these da-

tasets has a version number and instance number. The 

results show that the Lack of Coding Quality (LOCQ) 

has been evaluated as one of the best scores in the ex-

periments.  

Son et al. (2019) studied the prediction of soft-

ware defects through systematic mapping and estab-

lishing a protocol for the mapping. The processes of 

systematic mapping have been done in four stages :(1) 

Application of Inclusion-Exclusion Criteria: this stage 

is divided into two stages Inclusion Criteria and Exclu-

sion Criteria. Inclusion Criteria: In this stage of the 

study, the defect predication used software metrics 

provided by the analysis of statistical, search-based and 

machine learning techniques. Exclusion Criteria: In this 

stage study, the defect prediction does not use depend-

ent variable and non-empirical nature. (2) Quality 

Analysis: at this stage, choose the evaluation meth-

od-ology used (3) Data Extraction: what kind of data is 

used (4) Data Synthesis: involves the accumulation of 

facts from the collected data during the data extraction 

process. This experiment used the techniques: Decision 

Tree, Support Vector Machine, Neural Network, Re-

gression and Bayesian Learning. The Dataset was taken 

from different resources such as NASA, Eclipse, 

Mozilla, etc. The result indicated good accuracy when 

using a large Dataset with different metrics.  

He et al. (2015) used the Dataset from PROMISE, 

they selected 34 releases; each one has a number of 

instances files and number of defects. This study used 1) 

several independent variables which represent the in-

puts that will affect the dependent variable. The study 

used 20 static code metrics including CK suite, Mar-

tin's metrics, QMOOM suite, Ex-tended CK suite, 

McCabe's CC, and LOC. 2) Dependent variables: 

which represents the outputs and effect, it was studied 

to see how much it varies as the independent variables 

change. It used different machine learning algorithm; in 

order to evaluate the result such as J48, Decision Tree, 

Support Vector Machine, Logistic Regression, and Na-

ïve Bayes. The result showed that the simple metrics 

could be helpful to predict software defect. 
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Yang et al. (2014) proposed a new approach of 

learning to rank using the rank task. The study used 11 

different types of Dataset such as Eclipse, Lucene, 

Mylyn, PDA and other data. The study used different 

method (RF, RP, BART, NBR, ZINBR, ZIPR, HNBR, 

and HPR) to Compare the results for the 

11-datasetsusing three different metrics. The study used 

10 Cross-Validation. The result showed two benefits (1) 

learning to rank just do rank defects and does not need 

to predict defects for each module (2) these expected 

numbers were used to predict which modules are more 

flawed than others in project. Wang et al. (2013) ex-

amined the problem of imbalance distribution, which 

may be a problem or can help to predict defect in soft-

ware; through using 10 datasets from PROMISE; each 

one of these datasets has different number of features, 

different language and has a different percent of defect. 

This Dataset uses in different techniques in two 

top-ranked predictors machine learning. Naive Bayes 

and Random Forest and compare the result with other 

techniques PD, PF, balance, G-mean and AUC. The 

result showed that the balance and G-mean is the best 

result, which mean that it could use the imbalance dis-

tribution to help in predict defect. 

Hassan (2009) used predict the defect of program 

based on the change cod of complexity. There are many 

processes that can be associated with code change, in-

cluding the pattern of source code modification, rec-

orded by the source control systems, and a log that 

saves all dates that have been changed. Statistical Lin-

ear Regression (SLR Model) was built to predict faults 

in subsystem. Different models and different applica-

tion were used. The result showed that complex code 

change process negatively affects the software system, 

and the more complex changes to a file, the higher the 

chance the file will contain fault. 

3. Datasets 

To evaluate the effectiveness of defect prediction, 

we are conducting experiments on a set of data availa-

ble on the PROMISE website and which have been 

collecting data from NASA. The data from NASA 

come from different project. These public datasets in-

clude the information on space craft instrumentation, 

satellite flight control, and ground data for storage 

management. In this research we will use six public 

datasets that are most widely used in among research-

ers from this repository (CM1, JM1, KC1, PC1, 

Class-level data for KC1version 1 and Class-level data 

for KC1 Version 2). Each of these datasets possesses 

several software modules with input as the quality met-

rics. the outputs of each models are whether the pro-

gram is defective or non- defective. The features are 

divided into two main parts: McCabe and Halstead 

measure. This measure defines "modules" as the 

smallest functional units. All these datasets were de-

veloped in either C or C++ language as shown in Table 

1. From Table 2, can be noted that, for all the consid-

ered six datasets, JM1, CM1, KC1 and PC1 have 22 

attributes. Each of this Dataset have been including one 

output attributes which represent the goal of filed (de-

fect as 1, non-defect as 0) other attributes represent the 

quality metrics for the project acting as input attributes. 

These attributes can be classified in to McCabe metrics, 

9 Halstead measures, and 8 are derived Halstead 

measures. 

Table 1. Summary of Dataset 

Dataset # Attributes # instances #defected Language 

JM1 22 10855 80.65% C 

CM1 22 498 9.83% C 

KC1 22 522 20.5% C++ 

PC1 22 1109 93.05% C 

Class-level KC1 ver1 95 145 - C++ 

Class-level KC1 ver2 95 145 - C++ 

Table 2. The summary of code metrics 

Quality metrics Description 

loc (v) line count of code 

v (g) Cyclomatic complexity 

ev (g) Essential complexity 

iv (g) Design complexity 

loCode line count 

loComment Count of lines of comments 

loBlank Count of blank lines 

loCodeAndComment Count of code and comment lines 

uniq_Op Unique operators 

uniq_Opnd Unique operands 

total_Op Total operators 

total_Opnd Total operands 

branchCount Branch count of the flow graphs 

n total operators + operands 

v Volume 

l Program length 

d Difficulty 

i  Intelligence 

t Time estimator 

Defect  True/False 
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4. Research Methodology 

In this paper, we will be exploring a solution to predict 

the defect in software using Support Vector Machine 

(SVM) with different kernel functions. The datasets 

that will be used are taken from NASA metrics Data 

Program, the number of features is 22 (4 McCabe met-

rics, 9 base Halstead measures, 8 derived Halstead 

measures and defect variable as output) as discussed 

before. Before using the Dataset, the Dataset will be 

pre-processed and cleaned by handling missing values 

and outliers. The datasets are divided to training and 

testing data. In Software Defect Predication (SDP) the 

selection of training data and testing data will be done 

in two different ways; the first one, in the same Dataset 

will be choosing the training and testing data randomly 

(or may be sequential). In second one, the training will 

be taking from Dataset as previous version and the 

testing data will be taking from another dataset as next 

version. We will use the first approach. The data will 

be handled and cleaned before running experiments. 

The proposed models will be validated using 10-cross 

validation. After that, the SVM with different kernel 

functions will be examined. The last step, the results 

will be compared and evaluated using classification 

accuracy measures such as: Recall, Precision, Classifi-

cation Accuracy, and Balance. The tools that will be 

used are Rapid Miner for the implementation of our 

proposed solution. The accuracy of each model will be 

measured by the common accuracy measures: Recall, 

Precision, accuracy, Specificity, F-measure and Bal-

ance. Software Defect Prediction (SDP) detectors can 

be assessed according to confusion matrix or Error 

matrix: is a table used to describe the performance of 

classification model on a set of test data for which the 

true values are known. It is showed the number of cor-

rect and incorrect prediction, where is summarized 

with count values and broken down by each class. This 

is the key to the confusion matrix as shown in Table 3 

Shepperd et al. (2014). 

Table 3. Confusion Matrix 

 Predicted as defective Predicted as non-defective 

defective TP FN 

Non defective FP TN 

Where TP is True positive which means correctly clas-

sified as defective module. TN is True negative which 

means correctly classified as non-defective module. FP 

is False positive which means classifies non-defective 

module as defective module, and FN is False negative 

which means classifies defective module as 

non-defective module. 

To correctly identify a defective prediction, the "Preci-

sion" is used to determine the defective prediction rate, 

or the extent of the prediction is originally defective, or 

not. Recall is also called sensitivity, probability of de-

tection (pd), or true positive rate (TPR). There are also 

many measures called probability of false alarm (pf) or 

false positive rate (FPR) which suggests the percentage 

of false defective predictions. Based on what has al-

ready, an optimal predictor should achieve TPR (pd) is 

1, FPR (pf) is 0 and the Precision is 1. When the TPR 

and FPR are plotted, the result in Receiver Operating 

Characteristics (ROC) curve and from ROC the area 

under the curve (AUC) is to be measured. AUC is 

measured between 0 and 1, with 1 being the optimal 

solution point. Table 4 presents performance measures 

(Shepperd et al. (2014)). The, the data must be cleaned 

from missing value and outliers. The existing of miss-

ing values and outliers hinder the success of building 

accurate learning models therefore researchers sug-

gested using some statistical tool to ignore these outli-

ers such as boxplot. The missing values can be handled 

by either replacing them with the feature average of 

ignoring them. In this paper we ignore missing values 

because they are a few. The proposed algorithm must 

be validated using robust validation procedure such as 

cross validation and bootstrapping. During validation 

procedure the data is divided into training and testing 

subsets and training data is entered to learning the 

model while the testing data is used to evaluate accu-

racy of the model. 

5. Experimental Results 

This section presents the results of the experiment 

study, which has been conducted to validate our mod-

ule. The evaluation has been performed on Support 

Vector Machine (SVM) with different Kernel functions, 

using public datasets obtained from PROMISE data 

repository as described in Dataset section. To evaluate 
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the performance of each proposed model, used 

10-Folds cross-validation approach. This procedure 

divides the datasets randomly into 10-fold equal size 

subsets, where in each fold 9 subsets are used for 

training and one subset is used for testing. This process 

is repeated 10 times until all subsets act as testing data 

as described in section 3. In each experiment SVM 

model with different kernel function is constructed 

under two perspectives: using all features and using 

feature subset selected by PCA technique. Furthermore, 

six kernel functions were used: Linear, Quadratic, Cu-

bic, Gaussian, RBF, Sigmoid. 

Table 4. Performance measures 

metric Definition of the measure 

Sensitivity 

 
 

Precision 

 

False positive rate 

 

Specificity 

 

Accuracy 

 

Balanced Accuracy 

 

5.1 CM1 Dataset Result 

It can be noted from Table 5 that the Recall and Preci-

sion values are unacceptable for all kernel functions 

because their values are close to zero. Specificity val-

ues are very good for all kernel functions, with rela-

tively similar values. Balance values are not very bad 

with a range between (0.29 - 0.4). Accuracy values are 

very good, as almost 90% of all kernel functions are 

good. TRP and FPR values are unacceptable for all 

kernel functions because they are nearly zero. "Area 

Under Curve" is acceptable for all kernel functions 

ranging from (0.50 - 0.64). With respect to all perfor-

mance results, better solutions are observed for the 

Quadratic kernel function than the other five kernel 

functions with all features in the CM1 Dataset.  

Table 5. Performance results of the SVM kernel functions on 

CM1 Datasets, using all Features. 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.62 

Quadratic 0.16 0.42 0.98 0.41 0.90 0.16 0.02 0.64 

Cubic 0.16 0.22 0.94 0.41 0.86 0.16 0.07 0.61 

Gaussian 0.00 0.02 1.00 0.29 0.90 0.00 0.00 0.57 

RBF 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.50 

Sigmoid 0.08 0.29 0.98 0.35 0.89 0.08 0.00 0.53 

Table 6. Performance results of SVM kernel functions on 

CM1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.44 

Quadratic 0.18 0.41 0.97 0.42 0.89 0.18 0.03 0.71 

Cubic 0.20 0.28 0.94 0.44 0.90 0.00 0.00 0.66 

Gaussian 0.00 0.03 1.00 0.29 0.90 0.00 0.00 0.63 

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50 

Sigmoid 0.10 0.19 0.95 0.36 0.87 0.10 0.05 0.53 

It can be noted from Table 6 that the Recall and Preci-

sion values are unacceptable for all kernel functions; 

specificity values are very good for all kernel functions, 

with similar values. Balance values are not very bad 

with a range between (0.29 - 0.4). For all kernel func-

tions with a range between (0.86 - 0.95) the accuracy 

values are so good. TRP and FPR values are unac-

ceptable for all kernel functions, because they're almost 

zero. With all kernel functions with a range between 

(0.50 - 0.71) the values "Area Under Curve" are ac-

ceptable. With respect to all performance results, better 

solutions are observed for the Quadratic kernel func-

tion than the other five kernel functions considered 

with selected features in the CM1 Dataset. It was little 

improvement in all performance results when using 

selected features in CM1 Dataset. This is because of 

the features selected that were used. 
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5.2 KC1 Dataset Result 

From Table 7 we can note that for all kernel func-

tions the Recall values and Precision values are ac-

ceptable. Specificity values are generally good, as they 

are almost 96% for all kernel functions, with the ex-

ception for Sigmoid kernel that obtained of the 86%. 

Balance values with a range of (0.32 -0.55) are fairly 

good. The accuracy values for all kernel functions are 

relatively good with range between (0.78 - 0.84); TRP 

values are acceptable for all kernel functions except for 

the Cubic kernel function. FPR values for all kernel 

functions are unacceptable, as they are almost zero. 

"Area Under Curve" values for all kernel functions 

with a range between (0.66 - 0.81) are acceptable. With 

respect to all performance results, better solutions are 

observed for the RBF kernel function than the other 

five kernel functions considered with all features in the 

KC1 Dataset. 

Table 7. Performance results of SVM kernel functions on 

KC1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.36 0.75 0.97 0.54 0.84 0.36 0.03 0.81 

Quadratic 0.37 0.69 0.96 0.56 0.84 0.37 0.04 0.73 

Cubic 0.37 0.54 0.97 0.55 0.81 0.37 0.08 0.67 

Gaussian 0.37 0.74 0.97 0.56 0.85 0.37 0.03 0.77 

RBF 0.36 0.70 0.96 0.54 0.84 0.36 0.04 0.66 

Sigmoid 0.46 0.46 0.86 0.33 0.78 0.46 0.14 0.66 

From Table 8 we can note that the values Recall 

and Precision are acceptable for all functions of the 

kernel. All kernel functions have very good specificity 

values, with a range between (0.85 - 0.97). Balance 

values with a range between (0.31 - 0.49) are accepta-

ble. Accuracy values are so good for all kernel func-

tions; as they are close to 84% except for RBF is 77%. 

For all kernel functions, TRP values are acceptable; 

FPR values are unacceptable, as for all kernel functions 

they are almost at zero. For all kernel functions with a 

range between (0.65 - 0.83) the values "Area Under 

Curve" are acceptable. With respect to all performance 

results, better solutions are observed for the Quadratic 

kernel function than the other five kernel functions 

considered with selected features in the KC1 Dataset. 

When the selected features used in KC1 Dataset, 

all performance results were not improved except for 

Area Under Curve. This is because of the selected fea-

tures that have been used, and we do not know how the 

mechanism of selection entities in cross-validation.  

Table 8. Performance results of SVM kernel functions on 

KC1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.36 0.79 0.98 0.54 0.85 0.36 0.02 0.83 

Quadratic 0.40 0.72 0.96 0.58 0.85 0.40 0.04 0.73 

Cubic 0.43 0.62 0.93 0.59 0.83 0.43 0.07 0.65 

Gaussian 0.36 0.68 0.96 0.55 0.84 0.36 0.04 0.69 

RBF 0.35 0.66 0.95 0.54 0.83 0.35 0.05 0.65 

Sigmoid 0.44 0.44 0.86 0.33 0.77 0.44 0.14 0.65 

5.3 PC1 Dataset Result 

From Table 9 it can be noted that the Recall values 

for all kernel functions are Totally unacceptable. Preci-

sion values for all kernel functions are acceptable, ex-

cept the value for the Sigmoid kernel function. Speci-

ficity values for all kernel functions are very good as 

they are close to 96 %. Balance values with a range of 

(0.31- 0.49) are acceptable. Accuracy values are good 

for all functions of the kernel; since they are close to 

91%. TRP values are unacceptable, as they are almost 

zero for all kernel functions with the exception of the 

Cubic kernel. FPR values are insufficient for all kernel 

functions, because they are almost zero. "Area Under 

Curve" values for all kernel functions with a range be-

tween (0.53 - 0.73) are acceptable. With respect to all 

performance results, better solutions are observed for 

the Cubic kernel function than the other five kernel 

functions considered with all features in the PC1 Da-

taset. 

From Table 10 it can be noted that the Recall val-

ues for all kernel functions are totally unacceptable. 

Except for the Sigmoid and Cubic kernel functions, 

precise values are acceptable for all kernel functions. 

Specificity values are very good for all kernel functions; 

with the exception of Cubic kernel function, they are 

close to 97%. Balance values with a range of (0.31 - 

0.49) acceptable. For all kernel functions, accuracy 

values are so good; with a range between (0.90 - 0.93) 

except for the Cubic kernel function, it is 77%. TRP 
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and FPR values are unacceptable, because they are 

almost zero for all functions of the kernel except for 

the Cubic kernel. "Area Under Curve" values for all 

kernel functions with a range between (0.51 - 0.75) are 

acceptable. With respect to all performance results, 

better solutions are observed for the Gaussian kernel 

function than the other five kernel functions considered 

with selected features in the PC1 Dataset. There was no 

improvement in all per-formance results except in ac-

curacy when we used selected features in the PC1 Da-

taset. This is due to a function of the kernel, the select-

ed features that were used and we don't know how the 

process of selection entities in cross-validation. 

Table 9. Performance results of SVM kernel functions on 

PC1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.03 0.67 1.00 0.31 0.93 0.03 0.00 0.70 

Quadratic 0.13 0.32 0.98 0.39 0.92 0.13 0.02 0.68 

Cubic 0.29 0.39 0.97 0.49 0.92 0.29 0.03 0.67 

Gaussian 0.08 0.55 1.00 0.35 0.93 0.08 0.01 0.73 

RBF 0.08 0.67 1.00 0.35 0.93 0.08 0.00 0.54 

Sigmoid 0.05 0.13 0.98 0.33 0.91 0.05 0.03 0.53 

Table 10. Performance results of SVM kernel functions on 

KC1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.20 0.71 0.98 0.42 0.95 0.20 0.00 0.75 

Quadratic 0.12 0.43 0.99 0.38 0.93 0.12 0.01 0.63 

Cubic 0.40 0.10 0.83 0.50 0.75 0.48 0.22 0.55 

Gaussian 0.10 0.67 1.00 0.35 0.93 0.13 0.00 0.69 

RBF 0.08 0.72 1.00 0.37 0.93 0.11 0.00 0.53 

Sigmoid 0.07 0.16 0.97 0.35 0.91 0.07 0.03 0.51 

5.4 JM1 Dataset Result 

It can be noted from Table 11 that the Recall val-

ues are unacceptable for all kernel functions except for 

the Cubic kernel function; it is 77%. Precision values 

are acceptable for all functions of the kernel except the 

functions Sigmoid and RBF kernel. Specificity values 

are very good, as they are similar to one% of Linear, 

Quadratic, and Gaussian kernel functions, becoming 

nearly 90 % of RBF kernel functions and unacceptable 

for Cubic and Sigmoid kernel functions. Balance val-

ues with a range of (0.21 - 0.36) are acceptable. For 

linear, quadratic, and Gaussian kernel functions, accu-

racy values are so good; as they are close to 81 percent, 

but unacceptable in the functions of Cubic, RBF, and 

Sigmoid. For all kernel functions except the Cubic 

kernel function, TRP and FPR values are unacceptable 

because they are nearly zero. "Area Under Curve" val-

ues are acceptable for all kernel functions with a range 

between (0.51 - 0.75). expect for cubic kernel function. 

With respect to all performance results, better solutions 

are observed for the Gaussian kernel function than the 

other five kernel functions with all features considered 

in the JM1 Dataset. It can be noted from Table 12 that 

the Recall values are unacceptable for all kernel func-

tions except for the Cubic and Quadratic kernel func-

tions, 40% and 61% are in order. Precision values are 

acceptable for all functions of the kernel, with the ex-

ception of Cubic and Quadratic functions. Specificity 

value is very good, as it is close to one for Linear, RBF, 

and Gaussian kernel functions, as it is close to 82% for 

Sigmoid kernel function and unacceptable for Cubic 

and Quadratic kernel functions. Balance values with a 

range of (0.29 - 0.49) are not that bad. Accuracy values 

are so good for linear, RBF kernel functions as they are 

nearly 81%. In Sigmoid kernel function is 77% unac-

ceptable in Cubic, Quadratic, and Gaussian kernel 

function. TRP and FPR values are unacceptable for all 

kernel functions except for the Cubic and Quadratic 

kernel functions, as they are almost zero. "Area Under 

Curve" values are acceptable for all kernel functions 

with a range between (0.50 - 0.63) expect for Quadratic 

kernel function. With respect to all performance results, 

better solutions are observed for the RBF kernel func-

tion than the other five kernel functions considered 

with selected features in the JM1 Dataset. It was im-

provement when selected features used in JM1 Dataset, 

and no improvement in all performance. This is due to 

a function of the kernel, the selected features that were 

used and we don't know how the process of selection 

entities in cross-validation. 
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Table 11. Performance results of SVM kernel functions on 

JM1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.02 0.71 1.00 0.31 0.81 0.02 0.00 0.65 

Quadratic 0.09 0.54 0.98 0.36 0.81 0.09 0.02 0.64 

Cubic 0.76 0.19 0.21 0.21 0.32 0.76 0.79 0.48 

Gaussian 0.10 0.61 0.99 0.37 0.81 0.10 0.02 0.62 

RBF 0.01 0.34 0.90 0.30 0.18 0.01 0.10 0.55 

Sigmoid 0.06 0.28 0.59 0.27 0.19 0.06 0.41 0.54 

Table 12. Performance results of SVM kernel functions on 

JM1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.01 0.63 1.00 0.30 0.81 0.01 0.00 0.63 

Quadratic 0.62 0.18 0.32 0.45 0.38 0.62 0.68 0.45 

Cubic 0.41 0.20 0.60 0.49 0.56 0.41 0.40 0.50 

Gaussian 0.09 0.60 0.96 0.35 0.58 0.09 0.04 0.59 

RBF 0.08 0.58 0.99 0.35 0.81 0.08 0.01 0.53 

Sigmoid 0.34 0.32 0.83 0.52 0.73 0.34 0.17 0.58 

5.5 Class-Level Data for KC1 v1 Dataset Result 

From Table 13, it can be noted that the Recall 

values are acceptable for all kernel functions except the 

RBF and sigmoid kernel functions as they are nearly 

zero. Precision values are acceptable for all kernel 

functions except the RBF and sigmoid kernel functions, 

as they are nearly to zero. Specificity values are very 

good, as they are near to one for RBF and Sigmoid 

kernel functions, other Kernels with rang between 

(0.66 -0 .83). Balance values are very good, as they are 

nearly to 77% except in RBF and Sigmoid kernel func-

tions. Accuracy values are good as they are nearly to 

77% in all kernel functions expect unacceptable in RBF, 

Sigmoid kernel functions. TRP values are good as they 

are nearly to 80% for all kernel functions except for the 

Sigmoid and RBF kernel functions. FBR values are 

unacceptable as they are nearly to zero for all kernel 

functions except for the Cubic, Linear and Quadratic 

kernel functions. "Area Under Curve" values are ac-

ceptable within the range between (0.50 - 0.84) for all 

kernel functions. For all performance results, better 

solutions are observed for the Gaussian kernel function 

than the other five considered kernel functions in the 

KC1version 1 dataset class-level data with all features. 

 

Table 13. Performance results of SVM kernel functions on 

KC1 v1 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.82 0.81 0.73 0.77 0.79 0.82 0.27 0.84 

Quadratic 0.85 0.78 0.67 0.74 0.77 0.85 0.33 0.81 

Cubic 0.79 0.77 0.67 0.72 0.74 0.79 0.33 0.79 

Gaussian 0.75 0.87 0.83 0.79 0.79 0.75 0.02 0.83 

RBF 0.00 0.00 1.00 0.00 0.43 0.00 0.00 0.50 

Sigmoid 0.00 0.00 0.97 0.29 0.00 0.03 0.41 0.51 

Table 14. Performance results of SVM kernel functions on 

KC1 v1 Datasets, using PCA 
K

ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.84 0.70 0.48 0.62 0.39 0.84 0.52 0.77 

Quadratic 0.78 0.70 0.52 0.62 0.67 0.78 0.48 0.67 

Cubic 0.71 0.71 0.58 0.64 0.66 0.71 0.42 0.65 

Gaussian 0.90 0.69 0.40 0.57 0.70 0.90 0.60 0.08 

RBF 0.70 0.65 0.73 0.71 0.72 0.70 0.27 0.71 

Sigmoid 0.43 0.68 0.86 0.59 0.68 0.43 0.14 0.65 

From Table 14, it can be noted that for all kernel 

functions the Recall values and Precision values are 

acceptable. For all kernel functions, specificity values 

are unacceptable, except for functions in the Sigmoid 

and RBF kernels. Balance values with a range of (0.57 

- 0.71) are very good. Accuracy values are good for all 

kernel functions because they are nearly 66%. All ker-

nel functions are good at the TRP and FBR values. 

"Area Under Curve" values are acceptable with a range 

of (0.65 - 0.80) for all kernel functions. For all perfor-

mance results, better solutions are observed for the 

Gaussian kernel function than the other five considered 

kernel functions in the KC1version 1 dataset class-level 

data with selected features. Dataset used in class-level 

data were improved in Recall, Precision, Balance, TPR 

and FPR, there was no improvement in Area Under 

Curve and another performance was getting bad in-

cluding Specificity and Accuracy. It is due to a function 

of the kernel, the selected features that were used and 

we don't know how the mechanism of selection entities 

in cross-validation. 
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5.6 Class-Level Data for KC1 version 2 Dataset 

Result  

From Table 15, it can be noted that for all kernel 

functions, the Recall values are nearly 100%, except 

for the sigmoid and RBF kernel functions, as they are 

close to zero. Precision values are so good because the 

majority values are close to 95% in order for all kernel 

functions except RBF and sigmoid kernel functions. 

Specificity values are unacceptable because for all 

kernel functions, they are close to zero except for the 

Sigmoid and RBF kernels; they are 100% and 87% in 

order. Balance values with a range between (0.29-0.38) 

are not that bad, except for functions in the RBF and 

Sigmoid kernel, because they are nearly zero. The ac-

curacy values are so good that they are near to 94 per-

cent for all kernel functions except RBF, that it's nearly 

zero. TRP and FPR values are as good as similar to one 

for all kernel functions with the exception of the RBF 

and Sigmoid kernel functions, as they are nearly zero. 

"Area Under Curve" values are acceptable with a range 

between (0.50 - 0.74) Cubic, Sigmoid, and RBF kernel 

function, and other kernels are near to one. With re-

spect to all performance results, better solutions are 

observed for the Gaussian kernel function than the oth-

er five kernel functions considered in the KC1version 2 

dataset class-level data with all features. 

From Table 16, it can be noted that the Recall 

values are nearly to one for all kernel functions except 

the sigmoid and RBF kernel functions, as they are near 

to zero. Precision values are so good that for all kernel 

functions, except for RBF and sigmoid kernel functions, 

they are close to 97%,  

because they are nearly zero. Specificity values 

are unacceptable because they are nearly zero for all 

kernel functions, except for the Sigmoid and RBF ker-

nels, as they are near to one, and in the Cubic kernel 

function, they are 50%. With a range of (0.29-0.47), 

balance values are acceptable except for Cubic and 

Quadratic kernel functions, as they are close to 64 %. 

TRP values are as good as near to one for all kernel 

functions except for the RBF and Sigmoid kernel func-

tions as near to zero%. With the exception of the RBF 

and Sigmoid kernel functions, FPR values are so good 

with a range of (0.50 - 1.0) because they are close to 

zero %. "Area Under Curve" values are acceptable for 

the feature of the Sigmoid and RBF kernels, as they are 

nearly 50% other kernels, they are almost 85%. For all 

performance results, better solutions are ob-served for 

the Gaussian kernel function than the other five kernel 

functions considered in the KC1version 2 dataset 

class-level data with all features. 

The comparison of the proposed classifier with the 

Support Vector Machine (SVM) with different kernel 

functions applied for the same NASA datasets in terms 

of the performance metrics: sensitivity, specificity, 

probability of false alarm, balance, accuracy, and area 

under the curve. The results were different within the 

Dataset because each Dataset has a different number of 

entities, some data have 125 such as KC1version 2 

class-level data, other datasets have 10,000 entities and 

this affects the cross-validation selection process. For 

some datasets the selected features perform better in 

the same Dataset and in other datasets there is no im-

provement at all. 

Table 15. Performance results of SVM kernel functions on 

KC1 v2 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.99 0.95 0.13 0.38 0.95 0.99 0.88 0.93 

Quadratic 0.99 0.95 0.13 0.38 0.95 0.99 0.88 0.92 

Cubic 0.97 0.95 0.13 0.38 0.92 0.97 0.88 0.74 

Gaussian 1.00 0.95 0.00 0.00 0.95 1.00 1.00 0.89 

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50 

Sigmoid 0.01 0.50 0.88 0.08 0.06 0.01 0.13 0.51 

Table 16. Performance results of SVM kernel functions on 

KC1 v2 Datasets, using PCA 

K
ernel 

R
ecall 

P
recision 

S
pecificity 

B
alance 

A
ccuracy 

T
P

R
 

F
P

R
 

A
U

C
 

Linear 0.99 0.96 0.25 0.47 0.95 0.99 0.75 0.81 

Quadratic 0.99 0.97 0.50 0.65 0.96 0.99 0.50 0.85 

Cubic 0.99 0.97 0.38 0.64 0.96 0.99 0.63 0.83 

Gaussian 1.00 0.95 0.00 0.29 0.95 1.00 1.00 0.83 

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50 

Sigmoid 0.00 0.00 0.99 0.29 0.94 0.00 0.01 0.50 
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6. Conclusion 

Software Defect Prediction is a vital task during 

software development to help testing team to focus on 

defect proneness modules. To support that, various 

machine learning methods have been used to build 

models that can predict faulty modules based on da-

tasets collected from software industries. Among them, 

Support vector machine has shown good performance 

for this problem, but there are no prior studies exam-

ined the performance of kernel functions for defect 

prediction problem. Thus, this research we will exam-

ine the performance of support vector machine with 

different kernel functions over different datasets col-

lected from software data repositories. The results 

demonstrate that there is no kernel function that can 

give stable performance across different experimental 

settings. In addition, the use of feature subset selection 

using PCA did improve accuracy of kernel functions 

over some datasets. In CM1 Dataset, better solutions 

are observed for the Quadratic kernel function than the 

other five kernel functions with all and selection fea-

tures. In KC1 Dataset, better solutions are observed for 

the RBF kernel function than the other five kernel 

functions with all and selection features. In PC1 Da-

taset, better solutions are observed for the Cubic kernel 

function than the other five kernel functions considered 

with all features, but when select some features, the 

better solutions are observed for the Gaussian kernel 

function than the other five kernel functions. In JM1 

Dataset, better solutions are observed for the Gaussian 

kernel function than the other five kernel functions 

with all features, but when select some features, better 

solutions are observed for the RBF kernel function than 

the other five kernel functions. In Class-level data for 

KC1version 1 dataset, better solutions are observed for 

the Gaussian kernel function than the other five con-

sidered kernel functions in all and selected features. In 

in the KC1version 2 dataset class-level Dataset better 

solutions are observed for the Gaussian kernel function 

than the other five kernel functions considered with all 

and selected features. The results were different within 

the Dataset because each Dataset has a different num-

ber of entities, some data have 125 such as KC1version 

2 class-level data, other datasets have 10,000 entities 

and this affects the cross-validation selection process. 

For some datasets the selected features perform better 

in the same Dataset and in other datasets there is no 

improvement at all. 
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