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Abstract 

We investigate the collective behavior of a stock market by studying the dynamics of its representative index’s 

return, using the persistence diagram of the index return’s time-delay embedding, an approach of the 

Topological Data Analysis (TDA) in time series analysis. While the time-delay embedding captures the state 

space of the index return’s dynamics, the persistence diagram encodes the space's topological information under 

different spatial resolu-tions. Therefore, based on the changes in the point distribution of the persistence diagram 

over time, we propose a framework to detect its extraordinary movements. Our method provides a measure for 

the stability level of the mar-ket’s collective behavior. After applying this method for the daily return of the S&P 

500 index from 1970 to 2020, we demonstrate that the measure efficiently tracks the changes in topological 

information of the index re-turn. Furthermore, we can capture major American recessions when the measure 

exceeds a threshold. A continuous and rapid increase of the measure approaching the threshold is considered a 

warning of a crisis. Hence, our method provides a technical indicator for systematic risk management. 

Keywords: anomalies detection, market index, persistence diagram, time-delay embedding. 

1. Introduction 

Dramatical changes of a financial market are 

often of great concern to many investors, 

managers, or policymakers because they have to 

make decisions such as taking profits, cutting 

losses, or making policies to avoid market crashes. 

However, as a complex system, the chaotic and 

collective behaviors of the market are really 

difficult to predict. Although there are a lot of 

mathematical tools to study such behaviors, in 

stock markets, market indexes are often used to 

gauge the markets’ movements. In fact, since a 

market index is calculated from the prices of all or 

underlying shares, it is explicit and available to 

represent the market’s state. 

Since the market’s movement is complicated and 

has noise, it is not easy to extract the necessary 

information within the time series data of its 

indexes. One way to deal with this problem is 

using TDA, an approach using new topological 

and geometric tools to infer information about the 

structure of point clouds in metric spaces 

(Edelsbrunner and Harer, 2010). This approach is 

suitable to deal with noises since it helps study the 

behavior of a system for a wide range of 

parameters (Carlsson, 2009). Also, the 

topological features are expected to reflect the 

qualitative changes in a time series’ dynamics. 

Hence, TDA is recently used in many works to 

study the behaviors of time series such as 

detecting the periodicity of biological time series 

(Perea et al., 2015), understanding the global 

behavior of biological aggregations (Topaz et al., 

2015), detecting early warning signals of 

imminent market crashes (Gidea and Katz, 2018), 

analyzing a bridge deterioration through its 

vibration data (Umeda et al., 2019), studying the 

classification problem of volatile time series 

(Umeda, 2017) … 

In this study, we use the TDA approach to 

construct a method that can detect significant 

changes in a market index and give signals about 

financial crises. Similar to the work introduced by 

Gidea and Katz (2018), we investigate the 

behavior of the daily log price difference of a 
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market index, called the daily index return. 

However, for the purpose of getting the state 

space of the time series’ behaviors, we use the 

time-delay embedding of the financial time series 

where parameters of time-delay and embedding 

dimension are chosen from the empirical data. In 

the context of time series analysis, the time-delay 

embedding method, which is first introduced by 

Packard et al. (1980) and Ruelle (1979), is a 

simple method to convert one-dimensional data 

into point clouds of another higher-dimensional 

space, called the state space. It is useful to analyze 

chaotic time series because, according to the 

Takens’ embedding theorem (Takens, 1981), a 

chaotic series can be perfectly modeled by a 

smooth function when it is correctly embedded. 

Besides, with a suitable time-delay, the 

consequent series can be an efficient summary of 

the whole data (Sauer et al., 1991). As a result, an 

appropriate time-delay embedding of a time series 

helps reconstruct the original chaotic data such 

that we are able to capture the data’s dynamics in 

different states. Especially, when combining this 

method with TDA, meaningful topological 

features, such as connected components, circles, 

holes, associated with the reconstructed data can 

be extracted by TDA’s tools. Consequently, the 

dynamical characteristics of the time series are 

discovered, for example, its periodicity, its pattern, 

or the qualitative changes in its states. Some 

theoretical studies about this method can be listed 

such as (Fraser and Swinney, 1986), (Sauer et al., 

1991), (Kennel et al., 1992), (Abarbanel et al., 

1993), as well as practical studies such as (Umeda, 

2017), (Brown and Knudson, 2009), (Seversky et 

al., 2016), (Ma, 2020). Moreover, instead of 

considering data in only a certain time window by 

using Lp-norms of the persistence landscape as 

Gidea and Katz (2018) and Ma (2020), in this 

work, we compare the topological characteristics 

of the data with its historical characteristics 

encoded in the persistence diagram of its time-

delay embedding. Hence, our method is expected 

to find out the time series’ anomalies more 

obviously. For this purpose, we only focus on 

persistence diagrams and use unsupervised 

machine learning models such as k-means 

clustering in comparing them. More details about 

our method are described in Section 2. In Section 

3, we provide our empirical results when applying 

the method for investigating the dynamics of the 

daily return of the S&P 500 index in two cases: 

when the current dynamics of the time series is 

quite similar to its historical dynamics and when 

they are much different from each other. Next, in 

Section 4, we discuss the efficiency of our method 

in detecting strange fluctuations of the index 

return series by considering the relation between 

our calculation with recessions in the United State 

market. Finally, we give conclusions for our 

method of using TDA in examining the behavior 

of a market index and detecting its anomalies in 

Section 5. 

2. Research Method 

When we observe a time series data in a period, 

how can we recognize that its present behaviors 

are so different from its historical behaviors? The 

problem can be dissolved by comparing the 

topological features of the present data with the 

features of the historical data. The features were 

used to detect the qualitative changes in many 

studies such as (Donato, 2016; Umeda, 2019; Ma, 

2020). In order to get the features, we firstly 

embed the observed time series into a higher 

dimensional space to construct a state space of the 

data’s dynamics. The time-delay embedding 

method then combines with the persistence 

diagram, a powerful tool of TDA that helps 

encode the topological features of the underlying 

data’s behavior. In addition, we use the k-means 

clustering algorithm to make the topological 

information’s comparison of a given data and its 

historical data easier. More details are given in the 

following paragraphs. 

2.1 Time-delay embedding 

As discussed in (Sauer et al., 1991), an adequate 

embedding of a time series can define a state 

space or phase space of the system from which the 

data is acquired because it can capture the system 

dynamics in different states, preserve 

determinism and create a diffeomorphism for the 

attractors. So, in our work, before taking a 

topological analysis of our time series data, we 

embed the data into a suitable state space. 

Let remind that a time-delay embedding of a time 

series (rt)  of length N is a set of vectors X =

 (x1, x2, … , xN−(d−1)τ)  where each vector is 

obtained by gathering d adjacent values of the 
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series that is delayed by τ , i.e. xt =

(rt, rt+τ, rt+2τ, … , rt+(d−1)τ).  The vectors are 

called reconstructed vectors, τ is called the time-

delay and d is called the embedding dimension. 

Determining values of τ  and d such that the 

corresponding reconstructed space can store the 

data’s dynamical information is an attractive 

problem. In this work, we choose the lag τ  by 

using the average mutual information (AMI) 

provided in (Gallager, 1968): 

AMI(τ) = ∑ p̂(rt, rt+τ) log2
p̂(rt,rt+τ)

p̂(rt)p̂(rt+τ)
t=N−τ
t=1  (1) 

where p̂(rt, rt+τ)  is the estimated joint 

probability distribution of the bivariate time series 

(rt, rt+τ) . This measurement tells us how much 

information about rt+τ we can receive when rt 

is known. As suggested in (Fraser and Swinney, 

1986), the time-delay should be chosen where the 

first minimum of AMI occurs because we should 

not keep both rt and rt+τ when AMI(τ) is large. 

Besides, a large τ  makes much data lost 

nontrivially. Fig. 1 illustrates a sample data and its 

lagged version where the lag τ as suggested. In the 

figure, the dashed line is used to divide the 

training data and the test data. Moreover, to make 

the reader comfortable when following our 

method steps by steps, we use the same data in Fig. 

1 – 4. 

 

(a) 

 

(b) 

Fig. 1. Daily return of the S&P 500 index and its lagged 

version with τ = 3 given by the first minimum of AMI. 

Otherwise, for finding a suitable embedding 

dimension, one of the popular methods is the false 

nearest neighbors method proposed in (Kennel et 

al., 1992). The main idea of this method is that d 

is chosen as the smallest number such that, for any 

point, its nearest neighbor in dimension d is still 

close enough in dimension d + 1. So, the trouble 

of this method is verifying the threshold for the 

distance of a pair of points such that the two points 

are considered to be close to each other. To 

overcome this trouble, a new approach to the false 

nearest neighbors method was introduced in (Cao, 

1997). The author defines: 

a(t, d) =
‖xt,d+1−xt∗,d+1‖

‖xt−xt∗‖
,        t = 1, N − dτ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (2) 

where xt∗  is the nearest neighbor of xt  in 

dimension d; xt,d+1  and xt∗,d+1  are the 

reconstructed vectors of xt and xt∗  in dimension 

d + 1, respectively, i.e., xt,d+1 =

(rt, rt+τ, … , rt+dτ)  and xt∗,d+1 =

(rt∗ , rt∗+τ, … , rt∗+dτ) ; ‖. ‖  represents for the 

distance between the inside points. In this work, 

we use the Euclidian distance. Let E(d) be the 

mean value of a(t, d) over time, and E1(d) be the 

ratio of E(d + 1) to E(d). If E1(d) stops changing 

when d is greater than a number d0, it means that 

the time series comes from an attractor and d0 + 1 

should be selected as the embedding dimension. 

In our implementation below with the financial 

time series, we choose d0 as the point where the 

ratio of E1(d) to E1(d + 1) is larger than 95% for 

any d > d0. Fig. 2 illustrates the result of this 

method when it is applied for the test data used in 

Fig. 1. 

 

Fig. 2. An example of selecting the embedding dimension 

(filled point) by the idea of the false nearest neighbors. 
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We hope that the state space obtained from the 

time-delay embedding of our time series in 

previous periods can help recognize strange 

behaviors of the current data’s dynamics. 

Therefore, we call this space the training space. 

With the same parameters of time-delay, we also 

embed the data in the current period into the same 

dimensional space, which is called the test space. 

The training space should be large enough and, by 

partitioning it into consecutive segments of length 

m, we have a set of sample state spaces having the 

same size to check whether the test space has 

different topology. Due to this reason, we suggest 

choosing m as the size of the test space, i.e., its 

number of vectors. This enables the observation 

of periodic property or timing pattern of our data 

in a period with a certain length. 

2.2 Persistence diagram 

In order to reveal abnormal behaviors of the 

observed time series in the present compared with 

itself in the past, we propose to compare the 

topological structure of the training space and the 

test space by using TDA. TDA is an approach that 

provides topological and geometrical tools to 

infer information about the structure of a point 

cloud of a metric space at different spatial 

resolutions. In particular, for a point cloud whose 

distribution is unknown, to highlight the point 

cloud’s topology or geometry, TDA’s approach is 

building a “continuous” shape on the points. The 

shape is often a simplicial complex. Then, the 

homology groups of the simplicial complex are 

studied to infer the point cloud’s topology. 

Furthermore, to avoid perturbation or noise in the 

input data, the point cloud’s structure is 

investigated through a filtration, i.e., a sequence 

of simplicial complexes ordered by inclusion. The 

homology groups of each simplicial complex of 

the filtration represent the point cloud’s topology 

at a certain spatial resolution. So, the persistent 

homology of the filtration gives meaningful 

information about the point cloud’s topology at 

different scales. One of TDA’s main tools to study 

the persistent homology is the persistence 

diagram which encodes the topological 

information’s change of the point cloud's 

structure through the filtration (Edelsbrunner and 

Harer, 2010). The diagram is a graph in the plane 

ℝ2  such that it includes the diagonal {(x, y) ∈

ℝ2| x = y} and points, whose x and y coordinates 

are the birth and death scales of topological 

features respectively through a filtration of the 

space.  

In our study, the time-delay embedding of the 

index return series provides the state space of the 

data’s dynamics. Since the state space is a point 

cloud of the Euclidean space ℝd, where d is the 

embedding dimension, we can use the TDA’s 

tools to study the persistent homology of the state 

space, then draw a meaningful conclusion for the 

index return’s movement. For example, the 

groups of dense 0-dimensional features on the 

persistence diagram help classify the index 

return’s behaviors, while 1-dimensional features 

having high persistence values relate to the 

periodic trend of the system’s dynamics. 

Especially, we expect that by comparing the 

persistent homology of the index return in a 

certain period with the one in previous periods, we 

can recognize strange behaviors in the index 

return’s dynamics. 

More specifically, the topological changes over 

all scales of the reconstructed data in each 

segment of the training space are tracked by its 

persistence diagram. In this study, for each 

segment of the training space, we have a set of m 

reconstructed vectors, which are embedded points 

{x(1), x(2),…, x(m)} of the Euclidean space ℝd. 

We use the Vietoris-Rips complex filtration 

(Ripsα(𝕏))α∈ℝ, where the complex Ripsα(𝕏) is 

the set of simplices spanned by 𝕏  such that 

‖x(i) − x(j)‖  ≤ α  for all i, j (Edelsbrunner and 

Harer, 2010). Since the persistence of a feature is 

the difference between the scale where the feature 

appears and disappears, the persistence diagram 

briefly describes the evolution of the data’s 

structure over scales. 

Furthermore, we only pay attention to the 0-

dimensional and 1-dimensional topological 

features. The reason is that 0-dimensional features, 

which are corresponding to connected 

components of the point cloud under the filtration 

(Ripsα(𝕏))α∈ℝ , give information about 

concentration and clustering patterns of the time 

series’ dynamics, while 1-dimensional features, 

which are corresponding to holes, give 

information about the dynamics’ periodicity. In 

addition, in persistence diagrams of our financial 

time series data in many different time windows, 
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we observe that the features having higher 

dimensions rarely appear or only appear at large 

scales with short persistence such that they can be 

considered noises. For example, in Fig. 3, we can 

observe the numbers and positions of the features 

whose dimensions are from 0 to 3 in persistence 

diagrams of state spaces constructed from the 

training data and test data used in Fig. 1. In Fig. 3, 

for the features whose dimensions are higher than 

1, their number is too small in any persistence 

diagram. Also, the points corresponding to the 

features are very closed to the diagonal, so the 

features' death scales are approximately their birth 

scales. This means that the features' existences are 

not steady when the spatial resolution changes. As 

a result, we are only interested in the distribution 

of the points corresponding to 0-dimensional and 

1-dimensional features. 

Next, we merge persistence diagrams of all 

segments of the training space into one diagram, 

called the total diagram (ex. see Fig. 4b). This 

diagram helps get a general view of the “shape” 

of historical data in periods that are close and have 

the same length with the test data. 

2.3 K-means algorithm 

Giving the total diagram constructed from the 

segments of the training space, we would like to 

use it as a standard pattern to test the anomalies of 

the persistence diagram of the test space. 

Although there are some distance measures to 

compute the similarity between two persistence 

diagrams such as the bottle-neck distance and the 

Wasserstein distance that can be seen in 

(Edelsbrunner and Harer, 2010) for more details, 

these measures are not suitable for our 

comparison because they require examining all of 

the matchings between the two diagrams while 

the number of points outside the diagonal in the 

total diagram is extremely larger than the ones of 

the persistence diagram of the test space. So, we 

propose to compare the two diagrams by region. 

At first, we divide the points outside the diagonal 

of the total diagram into clusters. After that, we 

partition the plane ℝ2  into many regions 

corresponding to the clusters and compute the 

regions’ degree of commonalities, which will be 

the key to detect the strange topology of the test 

space.

Fig. 3. Persistence diagrams of (𝑹𝒊𝒑𝒔𝜶(𝕏))𝜶∈ℝ where 𝕏 is respectively the state spaces constructed from the S&P 500 index’s 

daily return in some periods; feature appearance and feature disappearance are the values of 𝜶 that the corresponding feature first appears 

and disappears in (𝑹𝒊𝒑𝒔𝜶(𝕏))𝜶∈ℝ, respectively. 

Here, we use a simple but popular k-means 

clustering algorithm, proposed in (Hartigan and 

Wong, 1979), to divide our points in the total 

diagram into clusters. The idea of this algorithm 

is that, for a given number k, we classify data 

points into k clusters so that the total within-

cluster variation, which equals the sum of square 

Euclidean distances between each data point 

assigned to the same cluster and the cluster center, 

is minimum. The first centers are chosen 

randomly from the data and are recalculated when 

one more point is assigned to a cluster. Since all 
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things we have to do is computing the distance 

between the points and cluster centers, this 

algorithm is easy to understand and fast. 

Moreover, it is good enough to classify the points 

in our financial persistence diagrams because of 

the points’ uncomplicated arrangements. In fact, 

in the diagrams, the points represented for 0-

dimensional features only lie on a line parallel to 

the vertical axis while the points represented for 

1-dimensional features mostly concentrate on a 

band along the diagonal {(x, y) ∈ ℝ2| x = y} (ex. 

see Fig. 3). Therefore, when we consider each 

point as a vector of three dimensions including the 

birth scale, death scale, and homological 

dimension of the corresponding feature, the 

clustering using the k-means algorithm run very 

fast and all points assigned to the same cluster 

have the same homological dimension. 

However, because the algorithm’s result is 

sensitive to its initial value, we should perform 

many iterations until the result converges. The 

main disadvantage of our clustering is that the 

number k of clusters must be verified before 

clustering the points. In order to solve this 

problem, we use the elbow method to find the 

ideal value for k. For more specific, we first apply 

k-means clustering with different values of k and 

draw the total within-cluster variation as a 

function of k. Next, we normalize the input and 

output values of this function to get the elbow 

point as the point with respect to the maximum 

curvature of the curve. Fig. 4 shows the result of 

selecting k by the elbow method when it is applied 

for the total diagram constructed from the training 

data used in Fig. 1. 

For any cluster i (i = 1, k̅̅̅̅̅), we calculate its degree 

of commonality as the following:  

Pi = ⟨
ni,j

nj
⟩      (3) 

where ni,j  is the number of points assigned to 

cluster i in persistence diagram j, nj  is the 

number of points in persistence diagram j and 〈∙〉 

is the average over all persistence diagrams of the 

training space’s segments. By Eq. (3), Pi is just an 

estimator of the probability that a point in the 

persistence diagram of a state space of our 

historical data can belong to cluster i. 

 

(a) The number of clusters (filled point) selected by the elbow 

method. 

 

(b) The total diagram after dividing to clusters. 

Fig. 4. An example of applying the k-means algorithm for a 

total diagram. 

2.2 Detecting anomalies of the topological structure 

of a state space 

Let’s consider the test data. After constructing its 

state space with the same time-delay and 

embedding dimension parameters, we want to 

know whether there are anomalies in the 

topological information of its state space when 

comparing to the topological structure of the 

training data. For this purpose, the persistence 

diagram of 0 and 1-dimensional features of the 

test space are computed to compare with the 

features encoded in the total diagram. 

Next, each point in the persistence diagram of the 

test space is assigned to cluster i of the total 

diagram if the cluster is the nearest ones having 

the same homological dimension with the point. 

Nevertheless, we need a condition to verify 

significant changes in this persistence diagram 

compared with the total diagram. We propose that 

a point in the persistence diagram of the test space 

will be assigned to a new cluster, cluster k + 1, if 
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and only if its persistence is larger than a threshold. 

Especially, we choose the threshold as the mean 

of the persistence of points belongs to cluster i of 

the total diagram added 3 times of its standard 

deviation. Remind that the total diagram is the 

coherence of many persistence diagrams 

constructed from disjointed segments of the 

training space, so we think that the three-sigma 

rule is valid enough to define the region of the ℝ2 

plane contained cluster i. Consequently, when the 

persistence of a point in the persistence diagram 

of the test space exceeds the threshold, the point 

shows a dramatical difference of topology from its 

nearest neighborhood. So, we have an acceptable 

reliability in verifying topological abnormalities 

of the test data. Besides, let’s remember that the 

new cluster k + 1 has no points in the total diagram, 

so its degree of commonality equals zero. 

Finally, we simply use the following measure to 

compute the deviation between the two diagrams 

through the difference in distributions of their 

clusters: 

δ =  √∑ (Pi − Qi)
2k+1

i=1     (4) 

where Qi is the fraction of points assigned to 

cluster i in the test space’s persistence diagram. 

Clearly, the larger δ is, the more the deviation of 

the test data’s dynamics and the training data’s 

dynamics is. Thus, a large enough value of 

δ  confirms that the index return's dynamics 

are much strange relative to its previous dynamics. 

 Some studies also use TDA’s tools to investigate 

stress periods of a stock market, such as the works 

of Gidea and Katz (2018) and Ma (2020). The 

authors use the persistence landscape, another 

tool of TDA which is equivalent to the persistence 

diagram in encoding the topological information 

of a point cloud when the spatial resolution 

changes. However, their studies don’t use the 

time-delay embedding method to convert a given 

time series to a point cloud because of the concern 

of the prior lack of an attractor and the intrinsic 

stochasticity of the time series of index returns. 

Instead, they use τ = 1  and use more market 

indexes to create a point cloud reflecting the 

market’s state, where the number of the indexes is 

considered the points’ dimension. In our opinion, 

because index returns are usually stationary or 

closer to being stationary (see Fig. 1), there may 

be some deterministic properties of index returns’ 

dynamics. This is confirmed by the relative 

stability of the persistence diagrams of 0-

dimensional and 1-dimensional features in Fig. 

3. Also, in our empirical study presented in the 

next section, we show that if the index return’s 

behavior is significant strange in a certain period, 

the deviation δ between the point distribution of 

the persistence diagram got in the period and the 

point distributions of persistence diagrams got 

from previous periods will be considerably large. 

On the other hand, we think that by using more 

major indexes of a stock market to be data of 

different dimensions of a point to apply TDA, 

coordinates of a point are not independent of each 

other. Indeed, even if the indexes are composed of 

different components, their components must be 

driven by the same market factor. Meanwhile, by 

using the time-delay embedding method, we 

convert the 1-dimensional time series of an index 

return to a point cloud of a higher-dimensional 

space to capture different states of the index 

return’s dynamics, where one coordinate of a 

point is nearly impossible to get from the point’s 

other coordinates. This is certainly more 

meaningful in our detecting problem. 

Furthermore, since δ  can measure the stability 

level of an index return’s dynamics compared to 

its historical dynamics, we also show a threshold 

of δ  concerning the dynamics’ remarkable 

changes in the next section. 

In summary, our anomalies detection method has 

two main parameters, the size of the test data and 

the size of the training data. According to the 

researching purpose, we suggest that the size of 

the test data must be large enough to capture the 

market’s behaviors in a few months to discover a 

recession if it exists. In general, a recession is 

often verified by a negative economic growth for 

at least two successive quarters. Therefore, in our 

implementation with the daily return series of the 

S&P 500 index presented below, we consider the 

test data including 132 trading days, i.e., about 6 

months. On the other hand, although the training 

data must be large enough as in many machine 

learning models but, when studying financial time 

series, the time window of the data should not be 

too large to avoid outdated information, which 

can affect the current market’s analysis. Hence, in 

Section 3, we consider the training data including 

750 trading days only, i.e., about 3 years. As a 
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result, we think that our method can help quantify 

the differences of a market index’s behaviors in a 

certain period from its behaviors in preceding 

periods through the value of δ. So, a large value 

of δ  is expected to give a signal of serious 

fluctuations, which might change the market’s 

current level of stability. 

3. Empirical Results with the S&P 500 Index 

In this section, we study the daily return (rt) of the 

S&P 500 index where the time series is the log 

difference of the daily closing value of the index. 

At first, we study the information got from the 

topological features of the time series through the 

persistence diagrams of the corresponding 

reconstructed vectors in different time windows. 

Then, we analyze the changes of δ when the test 

data’s dynamics is significantly different from the 

training data’s dynamics and when it doesn’t. The 

two cases are illustrated more clearly through the 

two example databases described below: 

⚫ Database 1: The training data is the return series 

in trading days from 10/24/2005 to 10/15/2008; 

the test data is the return series in trading days 

from 10/16/2008 to 04/27/2009. 

⚫ Database 2: The training data is the return series 

in trading days from 02/18/2016 to 02/10/2019; 

the test data is the return series in trading days 

from 02/11/2019 to 08/19/2019. 

The values of rt  in the two databases are 

shown in Fig. 5 where the dashed line divides 

the training data (on the left) and the test data 

(on the right). Using the two databases, we 

compare the behaviors of (rt) in 132 trading 

days with its historical behaviors in the 750 

closest trading days before. The test data's size 

approximates the number of trading days in 6 

months while the training data's size 

approximates the number of trading days in 3 

years as mentioned at the end of Section 2.4. By 

tools given in Section 2.1, we found that τ = 1, 

d = 9  and m = 124  for the training data in 

Database 1 while τ = 2, d = 7 and m = 120 

for the training data in Database 2. 

 

(a) Database 1 

 

(b) Database 2 

Fig. 5. The daily return of the S&P 500 index. 

Fig. 6 and Fig. 7 show the total diagram 

combined from persistence diagrams of all 

segments of the training space and the 

persistence diagram of the test space for 

Database 1 and Database 2, respectively. From 

the figures as well as statistics in Table 1 and 

Table 2, some characteristics of our financial 

data can be found. Firstly, the 1-dimensional 

features, which are reflected by points plotted 

as triangles, are always near the diagonal. 

Hence, the features have low persistence, 

which implies the instability of periodicity or 

repetitive patterns in the dynamics of our data. 

Secondly, most of the 0-dimensional features, 

which are reflected by points plotted as circles, 

tend to have higher persistence than 1-

dimensional features. The two phenomena are 

also observed when we study the daily return 

in other time windows having the same length. 

Otherwise, for the persistence diagram 

constructed by the test data in Database 1 (Fig. 

6b), the high death scales of its 0-dimensional 

features imply the existence of some extreme 
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patterns in the data’s dynamics. This means 

that there are some periods in which rt ’s 

behavior is dramatically different from its 

normal behavior. Clearly, this result is 

compatible with the large fluctuation of rt in 

test data as observed in Fig. 5a. By contrast, for 

Database 2, in the persistence diagram of the 

test space, we don’t see any point whose 

position is dramatically different from points 

of the total diagram. Consequently, these 

observations confirm that we can recognize 

strange behaviors in the dynamics of our 

financial data through the changes in points’ 

distribution in the persistence diagram. 

As mentioned in Section 2.3 and 2.4, the 

strange behaviors of rt  are detected 

quantitatively by the measure of dissimilarity 

between the total diagram found from the 

training space and the test space’s persistence 

diagram. After applying the k-means algorithm, 

we get k = 4 and k = 6 for the total diagram 

found from Database 1 and Database 2, 

respectively. The clustering results are 

illustrated in Fig. 6a and Fig. 7a. Table 1 and 

Table 2 give some fundamental statistics of the 

clusters’ persistence and their degree of 

commonality defined by Eq. (3) for Database 1 

and Database 2. The results of assigning each 

point of the persistence diagram of the test 

space to a cluster given by the total diagram in 

the two databases are given in Fig. 6b and Fig. 

7b. 

 

 
(a) The total diagram 

 

(b) The persistence diagram of the test data’s state space 

Fig. 6. Comparing the total diagram and the persistence 

diagram of the test space for Database 1. Circles represent for 0-

dimensional features and triangles represent for 1-dimensional 

features. The black sign ×  denotes features that cannot be 

assigned to any clusters of the total diagram. 

Table 1. Statistics of features’ persistence by clusters in the 

total diagram for Database 1. 

 

 

(a) The total diagram 

 

(b) The persistence diagram of the test data’s state space  
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Fig. 7. Comparing the total diagram and the persistence 

diagram of the test space for Database 2. Circles represent for 0-

dimensional features and triangles represent for 1-dimensional 

features. 

Table 2. Statistics of features’ persistence by clusters in the 

total diagram for Database 2. 

 

By Eq. (4), we compute that the deviation δ 

between the point distribution of the total 

diagram and the point distribution of the test 

space’s persistence diagram is about 83.7% for 

Database 1 and 11.9% for Database 2. Clearly, 

the large value of δ  for Database 1 is 

compatible with the extraordinary dynamics of 

the test data in this database, while the small 

value of δ  for Database 2 is consistent with 

the indifference between the dynamics of the 

index return in the test period and the 

dynamics in the training period. 

As a result, the persistence diagram of the 

time-delay embedding associated with the 

index return series can reflect the 

characteristics of the index return’s dynamics 

through its topological information. Therefore, 

our framework can help detect strange 

attractors of the time series by recognizing 

dramatic changes in the point distribution of 

the diagram. 

4. Discussions 

An important question is how large the value 

of δ such that it can be considered as a signal 

of the market phases’ switch. For finding the 

answer, we perform our anomalies detection 

framework for rt  in each time window, 

including 132 trading days with 22 rolling 

trading days, of the long period from 

12/18/1972 to 08/04/2020 to get a general 

view about the value of δ in the U.S. market. 

Consequently, we get 541 time windows. The 

dynamics of rt  in each time window is 

compared to its historical dynamics in 750 

preceding trading days. It means that we 

approximately compare the behaviors of rt in 

6 months to its behaviors in 3 preceding years 

with 1-month sliding. The value of δ is given 

in Fig. 8a as a function of time. The maximum 

of δ  approximates 83.7%, which is 

corresponding to the time window from 

10/16/2008 to 04/27/2009, the test period in 

Database 1. This period has attracted a lot of 

attention in literature since it is the time when 

the Great Recession of 2008 happened terribly 

after the shock of the bankruptcy of Lehman 

Brothers on 09/15/2008. The average and the 

standard deviation of δ in our test are about 

32.7% and 15.4%, respectively. 

Because δ  is larger when the point 

distributions of the test data’s persistence 

diagram and the total diagram of the training 

data are more different, we consider the values 

of δ which are on the left tail of its histogram 

in Fig. 9.  Especially, in case that the deviation 

δ  is larger than 60%, we found that the 

corresponding periods relate to recessions or 

market crashes. Moreover, this threshold is 

demonstrated empirically to be large enough 

to recognize significant changes of the 

market’s state. In fact, there are 32 time 

windows satisfy this condition of δ in our test. 

Because the length of each time window is 132 

while the length of the sliding period is only 22, 

some of those 32 time windows intersect with 

each other. Every pair of time windows which 

intersect with each other and time windows 

which lie between them are merged together. 

Consequently, we get 8 periods, named from A 

to H (Fig. 8b). The detailed information of 

these periods is provided in Table 3. 
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(a) Value of 𝜹 plotted at the corresponding test period’s last day 

 

(b) Daily return of the S&P 500 index 

Fig. 8. Relation of 𝜹 and the behavior of the S&P 500 index’s daily return. 

 

Fig. 9. Histogram of 𝜹 from 12/18/1972 to 08/04/2020. 

Table 3. Statistics of features’ persistence by clusters in the 

total diagram for Database 2. 

 

We found that the strange dynamics of the S&P 

500 index’s daily return discovered in periods 

A and B are corresponding to the 1973 – 1974 

stock market crash spreading from January 

1973 to December 1974 (Davis, 2003). Besides, 

periods B also relates to the 1970s stagflation, 

where the OPEC oil embargo signed on 

10/19/1973 is widely blamed for causing the 

stagflation (Merrill, 2007). Similarly, our 

framework indicates that there are anomalies 

in the dynamics of the index in period C 

because this period relates to the stock market 

crash of 1987, which was a rapid and severe 

downturn in the U.S. stock prices that occurred 

over several days in late October 1987. It is 

well-known with the name “Black Monday”. In 

addition, this period is a sensitive time with the 

1989 savings and loan crisis where more than 

1000 of the country’s savings and loans had 

failed. In fact, the crisis is an outcome of 

uncontrollable bad loans and losses for a long 

time, especially after the Federal Savings and 

Loan Insurance Corporation, an institution 

that administered deposit insurance for 

savings and loan institutions in the United 

States, had become insolvent by 1987 (Hanc, 

1997; Pyle, 1995). How about period D? 

Although it doesn’t really link to a recession 

since it just contains to a fast crash in October 

1997, which is affected by an economic crisis in 

Asia started in July. However, the crash is 

considered as the beginning of the end of the 

1990s economic boom in the U.S. (Schwert, 

1998) because, after the crash, economic 

growth became slower in 1997 – 1998. 

Meanwhile, period E is corresponding to the 

stock market downturn of 2002, also known as 

the internet bubble bursting with a dramatic 

decline in July and September 2002 (Mishkin 

and White, 2005). In fact, the crash is just the 
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worst result of the dot-com crash 2000 – 2002. 

Especially, the longest period, period F, is 

clearly related to the 2008 financial crisis, the 

worst crisis in the U.S. from the Great 

Depression of 1929. The crisis officially lasted 

from December 2007 to Jun 2009, and the 

bankruptcy of the investment bank Lehman 

Brothers in September 2008 is often thought to 

play a major role in the unfolding of the crisis 

(Williams, 2010). Period G also relates to a 

substantial change of the market’s collective 

behavior, a stock market selloff that occured 

between August 2015 to Jun 2016 (Wikipedia 

definition of 2015 – 2016 stock market selloff). 

Finally, the last period is corresponding to the 

COVID-19 recession, which started in February 

2020 (Wikipedia definition of Covid-19 

recession). 

As a result, our method allows us to track 

anomalies of a stock market’s behavior 

through observing its representative index’s 

dynamics, especially when the market enters a 

dramatic downside movement. The method 

provides a new approach in financial analysis 

when using the changes of the topological 

structure of the index return’s dynamics to 

capture the market’s stability level. In fact, 

people frequently conjecture a stock market’s 

stability based on analyzing macro factors that 

can directly affect all of the market’s 

components and drive their movements in the 

same direction. These factors can be the 

political situation, the government's financial 

policies and procedures, the infrastructure, the 

import and export values, the monetary... 

Although macro factors can provide a valuable 

prediction of the market development, this 

method requires deep knowledge about the 

economy and take much time to analyze many 

statistics of different aspects. Furthermore, 

because the macro statistics are published 

periodically, it’s not easy for investors to get 

this data to evaluate the market’s current 

situation if there is suddenly any significant 

change, such as the occurrence of an epidemic 

or a disaster. Meanwhile, with our method, we 

can detect significant changes in the market’s 

collective behaviors at any time because the 

index’s value is updated in real-time when the 

stock exchange opens. In particular, because 

the value of δ helps measure the level of the 

market collective behavior’s change, we 

propose that the value of δ can give a warning 

of systemic changes when it increases rapidly 

toward the threshold of 60%. When it exceeds 

the threshold, this indicates that the market is 

in, or is about to, a recession or simply has 

extraordinary movements that are difficult to 

be predicted by experience and historical 

data. With this extreme case, the value of 

δ helps gauge the severity of the recession; for 

instance, the largest value of δ  in our test 

corresponds to the 2008 financial crisis, the 

worst crisis in the last 50 years. 

5. Conclusions 

Basing on the persistence diagram of the time-

delay embedding associated with a market 

index’s daily return, we can understand more 

about characteristics of the market’s dynamics 

such as its concentration and periodicity 

through topological information encoded in 

the diagram. Furthermore, we also detect 

anomalies in the market’s collective behavior 

through substantial changes in the point 

distribution of the diagram. For example, when 

applying our method for the daily return of the 

S&P 500 index in 6 months, we found that the 

index return lacks stable periodicity and 

repetitive patterns because of the small 

persistence of the 1-dimensional features. 

Besides, the extremely high death scales of the 

0-dimensional features in some periods are the 

result of some abnormal patterns of the data’s 

dynamics. In addition, after considering the 

change over time of the persistence diagram of 

0-dimensional features and 1-dimensional 

features, we found that the deviation δ 

between the points’ distribution of the 

persistence diagram computed from the return 

series in a certain time window and the ones 

computed from the preceding data can 

efficiently capture the changes of the return’s 

dynamics. Especially when δ  exceeds the 

threshold of 60%, the market has exceptional 

behaviors that are difficult to be predicted by 

experience and historical data. Evenly, it may 

be falling in a dramatic recession. Therefore, 
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the value of δ  can be used to evaluate the 

market’s stability level, and a continuous and 

rapid increase of δ approaching the threshold 

gives a warning of a recession or crisis. In order 

to apply our framework of detecting 

abnormalities to other markets, similar 

researches should be taken to find their own 

thresholds. As a result, our study not only 

demonstrates an application of TDA to time 

series analysis in the financial context but also 

provides an easy-to-implement method to 

evaluate the stability of a financial market at 

any time without studying many economic 

factors. Thus, parameter δ can be an efficient 

indicator of systematic risk management, 

especially for individual investors who are not 

easy to get a full analysis of the economy’s 

operation. 
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