
 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

72

Review of Systematic Software Innovation Using TRIZ
Usharani Hareesh Govindarajan1*, D. Daniel Sheu1, Darrell Mann2

1National Tsing Hua University, 2IFR consulting
 *Corresponding author, e-mail: hareesh.pillai@ie.nthu.edu.tw

(Received 1 March 2016; final version received 20 March 2019)

Abstract

This paper attempts to review the use of TRIZ, Theory of Inventive Problem Solving, in the field of software innovation.

TRIZ finds widespread applications in many fields of engineering such as mechanical, electrical, electronics, chemical,

materials, industrial engineering, etc. Even, TRIZ has its applications in management and strategies. However, the

applications of TRIZ in the field of software engineering to solve problems that arise during phases such as software design,

development, coding, testing, and maintenance seems to be in its very initial phase. The primary objectives of this paper

are to review and consolidate the current state of the art in the area of TRIZ for software related problems by a literature

review. The current review will help academicians and industry experts to understand the current state and to visualize a

possible future direction.

Keywords: Software TRIZ, Systematic Software Innovation, TRIZification of software, Software TRIZ review.

1. Introduction

Innovation can be viewed as an invention that has

been successfully translated into commercial success. An

invention is an event that helps in finding a better way of

doing things. Inventive thinking or, more generally,

‘creativity’, has traditionally been viewed as a random

occurrence that occurred anywhere from office

brainstorming sessions to coffee breaks to morning

showers -- an ‘anywhere anytime phenomenon’. It was

also assumed that the occurrence of such ‘thinking

outbursts’ was untraceable and almost impossible to

replicate within a given timeframe. If ‘invention’ is about

the generation of ‘ideas’, innovation is about the

conversion of those ideas into commercialization. It is

well-known that at the present time, 98% of all innovation

attempts are ended in failure (Mann, 2012). Within the

world of Information Technology, the failure rate is

currently slightly worse, running at a failure rate of 98.5%.

1.1 Systematic Innovation Background

Systematic Innovation (SI) is a field which concerns

about developing or using systematic methods/processes

to generate innovative ideas for Technical, Strategic, or

Business aspects of Opportunity Identification and/or

Problem Solving. (Sheu, 2015). Figure 1 shows a

proposed classification of Innovation Methods (IM) in

which SI is a major part of it. (Sheu, 2015). (Sheu and Lee

2010). TRIZ is the Russian acronym for “Theory of

Inventive Problem Solving” and is a branch of systematic

innovation with ample support levels available in the form

of community, training, publications and enthusiasts.

TRIZ has circulated around the world fairly successfully

in more than 50 countries as indicated by (Bradford, 2016.)

The TRIZ philosophy and applications have been

expanded into various usage fields such as the ones shown

in Figure 2. (Sheu , 2015). (Sheu and Lee, 2010). Table 1

shows the typical extended application areas of Modern

TRIZ (SI). This paper focuses on the review of systematic

software innovation using TRIZ. This is a very new area

having relative much less developments compared to

other application areas however with great potential for

further developments.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

73

Fig.１ A proposed classification of Innovation Methods

Fig. 2 Hierarchical View of TRIZ (Mann, D. L. 2009, Sheu, D. D. 2015)

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

74

Table 1 Extended Application Areas of Modern TRIZ (SI)

2. TRIZ Philosophy

TRIZ is a philosophy, a set of systematic thinking

methods, and a set of tools with software. Figure 2

shows a hierarchical view of TRIZ structure. At the

base level, there are a number of tools which are the

tools actually need for problem solving. At the middle

level, there is the methodology or process, which is a

complete problem definition, analysis and solving

process. In the process, it employs the various tools

from the base level at appropriate stages of the process

to define, analyze, and solve problems. Regardless at

the tools level or methodology level, they are all based

on some powerful philosophies known as Pillars of

TRIZ. The traditional TRIZ has 4 philosophies which

are Ideality, Resources, Functionality, and

Contradiction. (Mann, 2007.) Identified Space/ Time/

Interface as the fifth pillar of TRIZ. (Sheu, 2015.)

Identified System Transfer and System Transition as

the sixth and seventh pillar of TRIZ. These are

fundamental philosophies which make TRIZ powerful.

Figure 3 shows a conventional problem solving

approach in which experiences and trial and errors are

used to take a specific problem into specific

solution(s). A typical TRIZ Problem-solving Process

is shown in Figure 4. Traditional problems solved by

TRIZ are problems in technology and engineering

context. Such problems require new, out of the box

solutions unknown before (Souchkov, 2007-2014).

TRIZ philosophy believes that in the center of most

inventive problems lies a contradiction. A

contradiction consists of a logical incompatibility

between two or more propositions. TRIZ solves two

types of contradictions. The technical contradictions

which exist in the system prevent it from reaching a

specific goal or to achieve the desired solution and the

physical contradictions occur when a parameter of the

problematic system has incompatible needs to satisfy

negative requirements, likely opposite requirements.

The TRIZ method aims to eliminate contradictions in

order to solve problems. Technical contradictions can

be solved through 39 elimination principles, while

physical contradictions can be solved through

separation principles which include at least separation

in space, time, system level, relationship, etc.

◼ Identifying Innovative Products & Services

◼ Solving Engineering problems

⚫ New and existing product developments/improvements

⚫ New and existing process/equipment developments/improvements

⚫ Patent circumvention/regeneration/enhancements

⚫ Software innovation

◼ Management/Service Applications

⚫ Establish Innovation Strategies/Business Model innovations

⚫ Service innovation

⚫ Identifying Organizational conflicts & solving them

◼ Combine with other tools to solve problems:

⚫ VE; QFD; FMEA; 6-Sigma tools, Lean, Kepner-Trego; …

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

75

Fig. 3 Conventional Problem Solving Approach

Fig. 4 TRIZ Problem-solving Process

2.1 Some TRIZ tools relevant to software engineering

Innovation involves the deliberate application of

information, imagination, and initiative in deriving

greater or different values from resources, and includes

all processes by which new ideas are generated and

converted into useful products. Systematic innovation is

the process of methodically analyzing and solving

problems with a primary focus on identifying the correct

problem to be solved and then generating innovative

solution concepts Khomenko N. states that in order to be

universal, tools and techniques should be as general as

possible. However, general tools tend to bring general

solutions. The ideas generated are sometimes so general

that it might not be of any practical use. To summarize

we need to customize generic tools to produce highly

optimized results and to customize we need the

theoretical background (Khomenko, 2010). This paper

aims to build this theoretical background. The Classical

(Russian) TRIZ methodology contains a host of tools. “A

review of TRIZ and its benefits and challenges in practice”

published in technovation 2013 summarizes widely used

tools (Ilevbare et al. 2013). In this section, an

introduction to some tools that can be applied in software

engineering is provided below (Toivonen, 2014).

1. 40 inventive principles - Inventive principles are

generic problem solutions (contradiction

elimination). They are compiled from mining

patent databases and other sources of problems and

their associated solutions. So far according to

TRIZ terminology, there are 40 identified

Inventive principles.

2. Contradiction matrix - A contradiction in the

broadest sense is a problem to be solved.

Contradictions are always between one or more

parameters that need improvement against one or

more parameters that are a hindrance and prevent

the improvement. The contradiction matrix helps

to reduce or eliminate such contradictions by

pointing users to solutions which are known as

inventive. Inventive principles are built on the

analysis of technical systems patents. Moreover,

the matrix is a statistical analysis of the use of these

inventive principles in technical domains.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

76

Applying such statistical analysis in another

domain helps to get a different perspective to

cross-disciplinary problem solving. The general

core concept is that while a problem may be unique

to a given domain the abstract essence of the

problem might have already been solved in another

domain. Statistical analysis helps to understand

this perspective thereby helping to solve problems.

3. Trends of evolution - TRIZ problem-solving

visualizes evolution as a process that has a finite

point (a point beyond which the need to evolve is

not needed or not possible) Systems evolve with

time through time and trends of evolution tools

help collectively summarize the evolution patterns

in various areas, suggest the evolution trend for a

problem. By mapping system’s current state

regarding these trends it is possible to discover

areas where there is a lot of potential for

improvement.

4. Function and Attribute Analysis (FAA) -FAA is a

technique to form an understanding of the current

state of a system by mapping its elements and their

interactions. FAA also helps to map both the

positive and negative intangibles of a system.

5. Perception Mapping - Perception mapping is a

method for approaching complex problems by

mapping the network that the individual

perceptions form and identifying which

perceptions hold key positions in that network and

focus improvement efforts on those areas.

6. Nine Windows Method (AKA system operator

Method) - helps to look at the problem from

different viewpoints regarding time (the past,

present, future) and abstraction level (system,

microsystem, macro system) It is flexible and can

be used to understand a problem, discover

resources and generate solutions.

7. Ideal Final Result -This tool allows the mapping of

what perfect looks for different stakeholder groups

regarding different attributes of the system (like

speed, cost, etc.). The results are documented in the

matrix where on dimension is formed by

stakeholders and the other by system attributes.

The matrix is useful for identifying contradictions.

Ideality is given the below formula.

Ideality = Σ Benefits / Σ Cost + Σ Harm

8. Resource Tools -By mapping the available

resources in a system it is possible to generate

solution ideas that rely on free and/or underutilized

resources. Resources can also act as a trigger for

solutions. Recourses can also be intangible like

human cognitive biases.

2.2 Available TRIZ Software

 There have been several attempts over the course

of the last 20 years to encapsulate TRIZ heuristics,

tools, and protocols into software tools. This section is

a review on generic TRIZ software’s that have been

pre-customized to solve software engineering

problems. The first of these, ‘TECHOPTIMIZER’

from Invention Machine and ‘Innovation

‘WORKBENCH’ from Ideation, were very much

focused on the codification of TRIZ ideas from the

world of engineering, and particularly the world of

mechanical engineering. Other tools have

subsequently been derived by a multitude of other

players, such as GOLDFIRE by Invention Machine

Corporation (subsequently sold to HIS Markit), PRO-

INNOVATOR by IWIN company, IDEATION

BENCHMARK by Ideation are examples of

commercial software’s available in this domain. etc.

are commercial software’s available in this domain.

Other derivative software from TRIZ include

‘PATENTINSPIRATION’, which has sought to

obscure much of the complexity of TRIZ behind smart

solution search algorithm design. None of these

providers have created any software specifically for

the IT world. There are also a number of individual

researchers or teams have developed some proprietary

software for various TRIZ tools. However, they are

not dedicated for software innovation. So far, the only

place where specific ‘IT-TRIZ’ software tools will be

found are those offered by Systematic Innovation Ltd,

in the form of the MATRIX+ and EVPOT+ (Trends)

tools, both of which contain specifically focused IT-

industry problem types and solution databases.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

77

3. Review of Systematic Innovation in Software

Engineering

Information technology (IT) refers to all jobs that

have to do with computing for all aspects of managing

and processing information. IT involves ever

expanding areas of computing such as the internet,

telecom equipment, engineering, healthcare, e-

commerce, computer hardware, software, electronics,

semiconductors, and computer services solving

problems. IT problems are problems arising anywhere

in the given above list. Troubleshooting is an example

of IT problem. Troubleshooting is often applied to

repair failed products or processes on a machine or a

system. It is a logical, systematic search for the source

of a problem in order to solve it and make the product

or process operational again. Troubleshooting is

needed to identify symptoms, determining the causes

and solving it. Software reliability estimation is

another are in computer science where TRIZ can be

applied to increase flexibility, extensibility, and

customizability. This section is a review of systematic

publications in line with prior TRIZ application to

solve software engineering problems (Domb, 2003).

There have been several attempts to encapsulate TRIZ

heuristics, tools, and protocols into software

engineering for a few years now. (Kluender, 2011).

(Ng, 2013). This section is a summarization of such

attempts.
Figure 5 shows the events relevant to systematic

software innovation. Systematic innovation saw its

first publicly visible application in the field of

software engineering in the year 1999 when Kevin C.

Rea applied the technique to solve concurrency

problem. His observations were published in the TRIZ

journal (Rea, 1999), (Rea, 2000), (Rea, 2002), (Rea,

2005d). Around then, many academicians, enthusiasts,

and researchers have applied various TRIZ tools

broadly in the field of Computer Science. This section

is a review of many such prominent works. Even

though many case studies of TRIZ applications to

solve software engineering problems are not available

for public due to host company's non-disclosure

policies, for clarity sake a time lines graph below list

prominent published works (available in open forums

and published in English language) in time order from

year 1999 to year 2015 followed by a short

summarization of the publications. Because of

language barrier, some Korean and Chinese

publications are not included in the chart below.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

78

Fig. 5 Timeline of Papers Published

In the year 1999 Kevin C. Rea, a research scholar

and consultant, attempted to break psychological

inertia towards usage of TRIZ in the field of software

engineering by demonstrating a solution to a software

concurrency problem. He used the Su-field (substance

field) analysis and the principles of contradiction in his

demonstration which was published in the TRIZ

Journal (Rea, 1999). The next year Rea published

papers in 2 parts which were a conversion of the 40

engineering inventive principles in Information

Technology or software context (Rea, 2000). In 2002

Rea published a paper titled “Applying TRIZ to

Software Problems＂ which gave an overview of

various techniques that could be used in inventive

software engineering. The paper also had given an

example of implementing a multisport

communications buffer using Su-field model. Thereby

starting off a new area of applying TRIZ in software

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

79

engineering, some experts also consider Rea’s work as

the beginning of software TRIZification.

In the year 2004, Fulbright published a paper

titled “TRIZ and Software Fini” which was an

extension of Rea’s work of 2001. The paper

demonstrated software context of a few inventive

principles whose equivalence was not given by Rea in

his earlier work (Fulbright, 2004). The work was

followed by Herman Hartmann, Vermeulen and

Martine Van Beers. In their paper titled “Application

of TRIZ in Software Development” supported the

discussion on the subject how software engineering

can also use TRIZ philosophy to solve problems. The

publication focused on area’s centric to software

engineering such as Inventive Principles, Fast

Algorithms, Moore’s law, software size, architecture

development and trends of technological evolution

(Hartmann et al., 2015.)

Darrell Mann in the year 2004 through his article

in TRIZ journal gave an introduction to the field of

science with a comparative example of software

versus a mechanical engine system. He also

customized TRIZ pillars and contradiction matrix

according to software requirements. The subject

context of Darrell Mann was expanded in his book

“Systematic Software Innovation” published in the

year 2008 (Mann, 2008).

Kevin C. Rea in the year 2005 published the

paper “TRIZ for Software Using the Inventive

Principles” the objective of writing up was to

showcase an example thereby breaking some amount

of psychological inertia towards problem-solving

using TRIZ. The contradictions that the example dealt

with are “waste of time” against "accuracy of

manufacturing” and the solution was stated via

inventive principles numbered 24 mediator and 26

copying (Rea, 2005). Toru Nakagawa, a Japanese

innovation scientist, in the year 2005 wrote a two-part

paper (Nakagawa, 2005a,) (Nakagawa, 2005b). The

first part titled “Software Engineering and TRIZ

(structured programming review with TRIZ)” explains

the concept of structured programming with center

around a workaround for go-to statements used in

programming constructs. "Go-to-less programming

from the TRIZ prospective". TRIZ principles 1

(Segmentation), 6 (Universality), 7 (Nesting) were

used for making the program easy to understand and

advocated 'Structured Programming‘. The second part

titled “Software Engineering and TRIZ (2) (stepwise

refinement and Jackson method review)” is a

refinement of Jackson’s method of structured

programming in correlation with TRIZ along with

some discussion on ‘Prior-reading technique’. TRIZ

principles like Segmentation, Local Quality,

Intermediary, Prior Action, and Homogeneity have

been used to make the comparison.

Boris Zlotin and Alla Zusman in the year 2005

published a paper, “Theoretical and practical aspects

of the development of TRIZ- based software systems,”

which in detail describes the need for TRIZ software

and the people who needed to develop such systems

with the requirement’s and Consideration's need to

make it keep in mind while building such systems

(Zlotin and Zusman, 2005). TRIZ and Software - 40

Principle Analogies, a sequel published by Tillaart in

the 2006 is an analogy of 40 inventive principles

explained in a software context (Tillaart, 2006). The

work is an updated analogy of Rea’s work with some

extra consolidations and value in the form of examples.

A similarity study between Altshuller's 40 inventive

principles and software design patterns by Erich

Gamma, Richard Helm, Ralph Johnson and John

Vlissides also known as "The gang of four" (Domb

and Stamey, 2006).. The paper discusses time-space

trade-off followed by a similarity study of design

patterns with TRIZ such as adapter pattern with

principle of mediator, bridge pattern with extraction

principle, composite and iterator pattern with principle

of universality, decorator pattern with the principle of

nesting, flyweight pattern with the principle of

transition to a new dimension and proxy pattern with

the principle of parameter change

John W. Stamey published TRIZ and Extreme

Programming (XP) which is an introduction to

Waterfall model of software development with a

comparative study of XP model to TRIZ Inventive

Principles (Stamey, 2006). An Information

Technology outsourcing analogy to 40 inventive

principles under the paper titled “Applying TRIZ in

Information Technology Outsourcing” by Ramkumar

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

80

Subramanian in the year 2007 has discussions on

various laws in reference inventive problem solving

and its outsourcing equivalence (Subramanian, 2007).

“Research and Application of the TRIZ

Contradiction Matrix in OOD” by Jianhong Ma

published in the year for the field of object-oriented

software design is proposed, paper further deals with

the abstraction of parameters in object-oriented

software design, construction of contradiction matrix,

the application of the matrix and the establishment of

design patterns. "TRIZ methods in software

development to enhance the productivity" by Igor

Odintsov published in the year 2009 shows TRIZ tool

application in various Software Development Life

Cycle stages (Odintsov, 2009)."A Conflict-based

model for problem-oriented software Engineering and

its applications solved by dimension change and use

of intermediary " published by Jung Suk Hyun in the

year 2009 deals with problem-oriented software

engineering via an author specified problem-solving

model named butterfly model (Hyun, 2009). The paper

also solves a shopping cart problem using the

proposed model.

"Design of enhanced software protection

architecture by using the theory of inventive problem

solving” published by song- kyoo kim in the year 2009

is on the stochastic software protection using closed

queues with unreliable backup(Song, 2009). The paper

performs stochastic multilayer software protection

analysis and random backup module protection based

on TRIZ contradiction principles 1, 10 and 11."Using

TRIZ to resolve software interface problems”

published by Igor Zadesenets in year 2009 is a

description to problem-solving process using TRIZ

(Zadesenets, 2009). The TRIZ models in discussion

here are the object-relationship model and the cause-

effect model and how software problems can be solved

using TRIZ methods. "Software Development and

quality problems and solutions by TRIZ” published by

Su-Hua Wang in the year 2011 is a description of

quality problems in the field of software engineering

and its solution using TRIZ (Wang, 2011). The paper

discusses TRIZ fundamentals and tools followed by

problems in software development followed by the

applicability of TRIZ in software problem in broad

scale.

“TRIZ for software architecture” (Mann,

2011).describes inventive principles and the

contradiction matrix in a software context. The paper

re-architectures a flight simulator using TRIZ tools

with similarity analysis of software quality attributes

with technical parameters of a contradiction matrix

and future scope of these tools are proposed.

“TRIZ and Software Innovation” by Darrell

Mann in the year 2011 gives a historical timeline style

review of innovation in the field of computer science.

The discussion is on 26 newly uncovered patterns for

discontinuous software evolution which are placed

under 3 groups namely physical, temporal and

interfacial. The paper concludes with a case study of

unmanned ariel vehicle control systems to enhance

operational capability by using TRIZ contradiction

matrix.

CRAFITTI consulting an innovation think tank

distributed a comprehensive online presentation in the

year 2011 titled "TRIZ for software innovation" which

discusses various aspects of software innovation like

patent analysis, elements of TRIZ contradiction, ideal

final result development philosophy, and various

trends laws of evolution and some advices on how to

embed TRIZ into an enterprise. “Analyzing object

models with theory of innovative solution” by S. B.

Goyal published in the year 2012 gives a co-relation to

Object Oriented Modeling Paradigm and TRIZ

applicability in Object-Oriented Environment(Goyal,

2012). The paper gives an introduction to Object

Orientation and Modeling technique UML (Unified

Markup Language) and TRIZ. The paper concludes

with a process of applying TRIZ to problem-solving in

object-oriented modeling

A comprehensive presentation titled "Innovation

in service delivery TRIZ in IT and retails" by Ir Daniel

Ng available online from November 2013.The

presentation starts with an introduction to TRIZ basic

contradiction and the inventive principle is covered

followed by few case studies. The presentation also

contains various publication details in TRIZ and

concludes with case sharing about internet mining and

retail industry.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

81

3.1 Review Consolidation

The review which takes into account publications

since 1999 shows the most explored areas in TRIZ for

software suggests contradiction matrices and inventive

principles as the most popular areas of exploration as

shown in Table 2. Detailed expansions of these

attempts is in the earlier section.

Table 2 Areas of TRIZ exploration in software context

3.2 Book Review

The time order of some relevant books regarding to systematic software innovation is shown in Figure 6.

Fig. 6 Time Order of Books (Published in English Language)

Some contexts of the books are briefed below.

A. Systematic Software Innovation by Darrell L.

Mann

Darrell Mann has integrated various TRIZ techniques

and philosophy in this book which was re-written

several times the final draft was published in 2004.

The book is targeted towards the software engineering

area and is a guide for professionals wanting to apply

TRIZ in software engineering domain.

B. TRIZ Principles for Information Technology by

Uma Kant Mishra

The books started as a manuscript presented in

TRIZCON-2007. The response to the manuscript was

overwhelming from around the world. The book

summarizes how inventive principles can be used in

0

1

2

3

4

5

6

1999 2001 2002 2004 2005 2006 2007 2009 2011 2012 2013

Contradiction Matrix

Inventive Principles

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

82

IT domain by demonstrating patent analysis, case

studies and pictorial examples against each principle

of the invention. The book was also acclaimed highly

by Toru Nakagawa of japan and was translated in the

Japanese language later.

C. Improving Graphical User Interface using TRIZ by

Uma Kant Mishra (published in the year 2009)

The book is for GUI designers and TRIZ researchers.

Graphical user interfaces have become critical to the

interaction element in almost all products even though

there is a great improvement in GUIs used a generation

earlier there still are limitations. TRIZ principles like

“Ideality”, “Functionality”, “Trends”,

"Contradictions", “Inventive Principles” etc. could be

used to solve such problems. The book cites more than

100 inventions from US Patent Database and explains

how the contradictions in the prior art methods have

been overcome by applying very simple but innovative

concepts.

D. Using TRIZ for Anti-Virus Development -

Building Better Software through Continuous

Innovation by Uma Kant Mishra.

"Using TRIZ for Anti-Virus Development" is a book

by Uma Kant Mishra, on the application of TRIZ

Techniques for improving the Anti-Virus technology.

The book demonstrates how various techniques of

TRIZ, including Contradictions, Inventive Principles,

Inventive Standards, Ideality, Su-Fields, Resources,

and Trends of Evolution etc. are useful for taking the

Anti-Virus technology forward to the next generation.

4. Current State

The preceding descriptions of activities and

milestones concerning the convergence of TRIZ and

‘software’ suggests that the level of effort has been

considerable. Even a cursory examination of the world

of IT professionals, however, would rapidly reveal that

the impact of this effort has been minimal. The large

majority of IT professionals, in other words, will still

have never heard of TRIZ. Refer to Figure 7 In terms

of the Gartner Hype Cycle (Fenn et al. 2008), neither

TRIZ nor its ‘Systematic Innovation’ successor would

be perceived to have entered even the ‘technology

trigger’ start point of the curve. This fact should

provide some clues as to the likely future scope for

TRIZ/SI activities in the software world. Before we

enter that discussion, however, it is worthwhile to

exploring some of the possible reasons why TRIZ/SI

has not yet been viewed as a ‘Technology Trigger’

within the world of IT.

Fig. 7 Hype cycle and ‘TRIZ/SI for Software’ position

A review of the previously discussed TRIZ and

software literature from Section 3 of this paper reveals

two distinctly different approaches to the challenge of

applying TRIZ to problems and challenges within the

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

83

IT world. The first of these approaches is to be found

in nearly all of the texts discussed. It is an approach

based on re-application of already established TRIZ

tools, protocols, and procedures to IT problems. In

theory there is nothing wrong with this strategy since

a large part of the basic premise of TRIZ is ‘someone,

somewhere already solved your problem’ and so an

analogous problem in the world of, say, mechanical

engineering, should according to the theory provide

solution clues to a person working in the IT sector. In

the case of truly universal findings like the 40

Inventive Principles this ‘analogous worlds’

assumption has proved to be valid. An extensive

investigation by multiple authors has failed to reveal a

‘41st Principle’ that is found in the world of software

that is not found in any other sector (Tillaart, 2006).

 Beyond this finding, however, the relevance of the

analogical approach has been found to be extremely

limited. Attempts to apply the classic Altshuller’s

Contradiction Matrix – a tool created in 1973 by the

software industry even existed – is virtually

meaningless since the 39 parameters that make up the

sides of the Matrix bear little, if any, resemblance to

parameters that a software engineer would consider to

be relevant. Similar disconnects can be observed with

attempts to deploy the TRIZ S-Fields and Inventive

Standards tools: the level of abstraction required for

software engineers to meaningfully use the tools is

significant. Considerable enough at least that were a

software engineer new to TRIZ to accidently read one

of the papers or articles on the subject their likely

reaction would be either, a) this has absolutely nothing

to do with me, or, probably more likely, b) the solution

being proposed in this case study is a really bad

solution to the problem and so the method through

which the solution was derived must therefore also be

bad. Which is a way of saying that there are few, if any,

published papers that contain anything that a software

engineer would think to be a ‘good solution’? Not to

mention the fact that in the large majority of published

cases, the mediocre result was not derived by actually

using TRIZ in the first place.

When Mann and the Systematic Innovation

Company entered the world of software through the

eventual publication of the Systematic (Software)

Innovation book, it was the result of an extensive

research, commenced in 1999, to go back to the

original TRIZ philosophy and to actually analyze

hundreds of thousands of breakthrough software

solutions. Three big things emerged from this decade-

long and still going research:

a) The large majority of the classical TRIZ tools were

meaningless in the context of software problems.

Making an analogous connection between a

parameter in the 39x39 Altshuller Contradiction

Matrix and a software problem might generate

some Inventive Principle solution suggestions, but

these suggestions would be largely irrelevant to the

specific problem at hand. (Mann, D. L. 2008)

reports an average relevance of less than 20%. If

the TRIZ tools were to ever become relevant to

software engineers, new research and new tools

would need to be created.

b) Working with actual software engineers and

examining the sorts of problems they encounter

during their work it very quickly became clear that

their biggest problem was not knowing what the

problem was. The roots of this problem come from

the prevailing software industry challenge of the

gap between the software architects and coders and

their system ‘customers’. The customers tending to

not know what’s possible, and the coders not

knowing what their output is actually going to be

used for. A big part of this gap may be seen to

involve the ‘unspoken’ – lack of tacit knowledge

and lack of understanding of the emotional drivers

that affect peoples’ behavior.

c) Also through the experience of working with

software engineers, whenever they do encounter a

problem it is very rarely what might be classified

as a ‘software problem’. Far more likely was that

the problem was a management problem or a

problem with the supporting technical systems

which the software was expected to control. Once

a solution could be configured, it could almost

always be coded. The need for solving ‘coding’

problems was and still is very much the exception

rather than the rule.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

84

As a consequence of these findings, the

architecture of the Systematic Software Innovation

book changed considerably compared to other TRIZ

tomes (section 3.2, Book A). Firstly it compiled

together all of our research findings to build software-

bespoke new tools. Second, and more importantly, it

introduced new tools and approaches from outside

TRIZ that would better assist software engineers in

understanding their real customer needs rather than the

ones contained in the specifications they published.

Despite all of the time and effort that went into

the production of the Systematic Software Innovation

text and associated software tools, it has made a very

little impact beyond a small number of IT service

organizations. Perhaps not surprisingly this

disappointing outcome has provoked a significant

additional program of research to reveal the

underlying reasons for this lack of recognition by the

software community on TRIZ and the new suite of

Systematic Innovation tools.

One thing for sure is that there is no shortage of

innovation attempts taking place in the IT world.

Figure 8 shows another version of the Hype Cycle, this

time showing the relative positions of some of those

attempts along the cycle. To the best of the authors’

knowledge, none of these attempts has made any use

of TRIZ/SI. They are all innovation attempts borne of

a perceived customer need followed by trial-and-error

solution finding. Given the choice of deploying a

repeatable innovation process (e.g. TRIZ) or using

trial-and-error, most industries would tend to opt for

the more efficient approach. So, paradoxically, the IT

world – which is one of the most innovative on the

planet right now – is the one showing the least

inclination to using more efficient processes. Why

might this be?

One very logical answer to the question might be

that trial and error works in the virtual world because

it is possible to make very rapid solution iterations at

negligible cost when compared to what needs to occur

to make a solution iteration in the physical world.

Another one is that ideas spread much faster in

the virtual world. No sooner has one coder found an

interesting solution to a customer need, every other

coder in the vicinity is able to see what has been done

and is able to easily reproduce it. Helped in no small

part by the fact that in most parts of the world it is very

difficult to protect the IP that might be associated with

a new piece of software.

Fig. 8 Assorted IT Industry Innovation Attempts on the Hype Cycle

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

85

Taken together, these two factors perhaps

indicate that the world of IT innovates ‘well enough’

already without the need for any kind of systematic

process. We will return to that thought in the next

section of the paper. Before that, however, we will

make a small diversion to investigate what TRIZ and

Systematic Innovation might have to tell us about the

likely future direction and evolutionary potential of the

software.

4.1 The ‘Ideal’ Software?

One of the pillars of TRIZ/SI is that all systems

evolve in a direction of increasing ideality towards an

‘Ideal Final Result’ destination defined as the point

when the system delivers all of the desired benefits

(‘functions’) with zero negatives (typically defined as

‘costs’ and ‘harms’). Because fundamentally, as a

system becomes more ideal, the number of effective

solution possibilities becomes progressively smaller.

This is counter-intuitive for most players and nearly all

industries. Refer to Figure 9, what it in effect means,

if we plot an evolution story that connects current

players with the evolutionary end point, it quickly

becomes possible to identify the likely winners and

losers. The Figure shown here for the IT industry as a

generic whole makes no attempt to be comprehensive

in terms of mapping a compendium of current players

on the left-hand-side of the image, but it does contain

the current biggest ones – the primary one being the IT

Services industry and the millions of coders that work

within it – and also the ones that will inevitably

eventually supersede them. If the ‘ideal’ software, on

the right-hand point of the cone, does everything it

needs to do ‘by itself’ (is ‘autopoietic’ in the

vernacular), then fundamentally it does not require

programmers to create it anymore. Software

Developers that aren’t associating themselves with the

emerging worlds of affective computing, or Big Data

Analytics or expert systems and genetic algorithms

beware, evolutionary convergence clearly says your

days are numbered.

Fig. 9 Convergent Evolution of the IT industry towards its ‘Ideal Final Result’

So much for the evolutionary destination of

‘software’ and the software creation industry, we now

shift the focus of attention to the Trends part of the

TRIZ story in order to examine some of the key

evolutionary jumps that the industry will likely make

during the journey towards the autopoietic ‘ideal final

result’ destination.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

86

4.2 Evolution Potential

The original TRIZ research into the evolution of

systems found within the physical world uncovered a

number of patterns of evolution that have subsequently

come to be described as the ‘Voice of the System’, or

‘signposts’ that direct innovators towards ideal

solutions. The Systematic Software Innovation

research program sought to identify whether there

were equivalent signposts to be found in the IT

industry EvPot+ software analog contains 26 such

evolution patterns. A parallel piece of research to do

the same job in the world of business and management

uncovered 32 (so far) patterns in that describe the

evolution directions of an enterprise (Mann, 2009).

Figure 10 illustrates a composite of Trend patterns

from the IT and business worlds that are relevant to the

IT industry.

Fig. 10 Composite Evolution Potential Radar Plot of IT Industry

As is the usual convention with the resulting

‘Evolution Potential’ plot, each Trend is represented

by a spoke on the radar plot, and the plot details how

far along a particular trend the industry has a whole

has thus far evolved. At this point in the evolutionary

history, some 65% of the Evolution Potential has been

utilized. Which in turn means that 35% of the possible

evolution jumps the industry could make have thus far

not been exploited. What might some of this untapped

potential be able to tell innovators about the future

likely solution directions of the industry as a whole?

Again, this is a question that goes beyond the scope of

the purpose of this paper, but by way of helping us to

answer the earlier stated question about the future of

innovation methods within the IT world, here are a few

clues provided by the Trends:

1. Controllability Trend – software takes on

predictive (‘feed-forward’) capabilities in order

to anticipate its own future needs, and eventually

becomes autopoietic.

2. Reducing Human Involvement Trend – human is

progressively removed from the system at both

the coding, but also specifier and customer ends

of the value chain

3. Customer Intangibles Trend – software is

increasingly capable of tapping into the

emotional and ‘unspoken’ real needs of

customers and users

4. Nesting (Up) Trend – software is increasingly

integrated into higher level systems; source code

becomes absorbed into higher level ‘meta-

languages’ (Mathematica, et al, where the user is

able to design algorithms without ever having to

learn how to code)

5. Design For Robustness Trend – the software

evolves to become more and more error-proof, to

eventually become ‘anti-fragile’ – attempts to

break the system end up making the system

stronger

6. Trimming Trend – all of the superfluous software

(the IT Services industry right now might be

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

87

thought of as millions of smart people re-

inventing the same basic wheels) will be

‘trimmed’ from systems such that what is left

delivers all of the intended capability without

unneeded excess.

7. Customer Expectation Trend – the software

industry will shift from ‘service’ to ‘experience’

(taking care of the intangibles) to, eventually,

‘transformation’, at which point it will take over

the responsibility for delivering the intended

outcomes from the customer.

8. Design Point Trend – the software algorithms

will learn how to adapt and reformulate

themselves according to different operating

regimes…

9. Knowledge Trend - …until eventually it will be

able to sense and adapt to the prevailing and

emergent contexts of a given user situation.

And so with these clues firmly at the fore of our

thinking, back to our final question…

5. Future Scope

Will TRIZ/SI ever find a role in the IT world?

The answer to this question has to be yes. The answer

is clear since Systematic Innovation fundamentally

encapsulates a host of ‘universal truths’ – everything

evolves towards an ideal end state, and will do so

through a series of contradiction-solving,

discontinuous (s-curve) jumps that follow a set of

Evolutionary ‘Laws’. In this sense, the IT world is no

different from the physical world (Mann, 2011).

Beyond that high-level similarity, however, the

virtual and physical worlds diverge considerably in the

manner in which innovation happens. In the physical

world, efficiency is important and every new solution

iteration is expensive, requiring considerable human

activity to make things happen. Consequently, it is

important that enterprises looking to innovate in the

physical world provide those expensive people

resources with appropriate innovation efficiency

raising skills. Training thousands of people in TRIZ/SI

makes sound economic sense in this context.

In the virtual world, where ideas transfer very

quickly, there is far less justification for training large

numbers of people. ‘All’ that is required is that a small

number of people are skilled in the universal truths of

TRIZ/SI to be able to encode them into systematic

creativity algorithms.

There is a considerable irony in this story. TRIZ

is and has always been about distilling the ‘DNA’ of

innovation. Altshuller himself published a book called

‘The Innovation Algorithm’. Having created at least

the start of such an algorithm, it becomes highly code-

able. And the moment it does become coded and the

IT world is presented with even the start of a

meaningful ‘computer-aided innovation’ capability –

especially one also equipped with (highly predictable)

‘self-updating’ capacity – then it removes the need for

thousands of coders to do the creativity and innovation

solution generation job manually. Paradoxically, by

working out the ‘innovation algorithm’, TRIZ has

ruled out the likelihood of widespread TRIZ

deployment. At least from a visible-to-the-lay-person

perspective. Most coders will never come to hear

about TRIZ, but much of TRIZ will come pre-coded

into the software kernels they get to work with. Only

an elite few need ever know the ‘Innovation DNA’ to

be able to upload it into tomorrow’s software systems.

The IT services sector is already hitting fundamental

contradictions associated with increasing competition

and reducing margins. In the West, the contradiction

has been evident for a number of years already – as

evidenced by the extraordinary amount of outsourcing

of code development work to the developing parts of

the world. But because the contradiction is present and

causing pain, there is every incentive to resolve it by

innovating the software development process such that,

as outlined in the previous section. Software that

‘writes-itself’, ‘maintains itself, and ‘updates-itself’

solves massive business challenges for western

organizations and so they have every incentive to

derive and create such solutions. The recent release of

TRIZ-based software systems like PanSensic being a

case in point. Once a customer has installed a smart

PanSensic dashboard, they are already halfway to

automatically revealing future innovation

opportunities and using the Trends and Inventive

Principles to generate solutions. All without any need

to teach any of their personnel anything at all about

TRIZ.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

88

The authors believe that the future of TRIZ in the

IT world is assured. Just not through training

thousands of coders. But rather by being the first and

best to encode the universal truths TRIZ research has

revealed into a Systematic Software Innovation

algorithm.

The big outstanding challenge in that world is

how the inherent (monetary) value that comes through

the TRIZ knowledge can be captured. In the physical

world, it has been possible to capture at least a part of

the monetary value of it through training large

numbers of people, publishing books and selling

TRIZ-based software tools. These models

fundamentally can’t and won’t work in the virtual

world. Millions of software engineers cannot be

allowed to continue reinventing the same wheels

because customers increasingly cannot afford them.

There is, therefore, enormous business pressure to

evolve software creation capability in the autopoietic

direction. Perhaps we should contemplate inserting

that challenge into the Systematic Software Innovation

algorithm?

6. Conclusion

Collaboration between different professionals is

more and more necessary now (Khomenko, 2010).

Systematic innovation can help in this constructive

collaboration. TRIZ is expected to play a major role in

the design and development of software systems

providing new capabilities that far exceed today’s

levels of autonomy, functionality, usability and

reliability. TRIZ absorption can be accelerated by

close collaboration between academics and industry.

This review paper provides detailed introduction to

systematic innovation followed by brief introduction

to TRIZ with a review of key tools inside the

framework. An analysis of commercial and academic

TRIZ software is presented next followed by a detailed

literature review of systematic innovation in software

engineering, finally views of subject matter experts in

TRIZ area are presented to understand the current state

of TRIZ application in software engineering and future

scope. The authors hope that the review in this paper

will help academicians, researchers and software

companies understand the current industry dynamics

and help achieve investments in TRIZ for enhancing

their existing and future software development process

and products.

7. References

Bradford, G. (2016). TRIZ is now practiced in 50

countries. Machine Design, March 21, 2016.

http://machinedesign.com/contributing-

technical-experts/triz-now-practiced-50-

countries, accessed on April 21, 2016.

Domb, E. (2003.) TRIZ for Non-Technical Problem

Solving, The TRIZ journal Apr.

Domb E and Stamey J. W. (2006). Describing Design

patterns in software engineering.

Fenn, J. and Rascino, M. (2008). Mastering The Hype

Cycle: How To Chose The Right Innovation At

The Right Time, Harvard Business School Press.

Fulbright, R. (2004). TRIZ and Software Fini.

Goyal, S. B. (2012). Analyzing Object Model with

Theory of Innovative solution.

Hartmann H, Vermeulen and Beers M. V. (2004)

Application of TRIZ in Software Development.

Hyun, J. S. (2009). A Conflict-Based Model for

Problem-Oriented Software Engineering and Its

Applications Solved by Dimension Change and

Use of Intermediary.

Ilevbare, M. I, Probert D and Phaal R (2013) A review

of TRIZ, and its benefits and challenges in

practice.

Khomenko, N(2010). Keynote presentation for 6th

TRIZ symposium in Japan, Tokyo. September

2010

Kluender, D. (2011). TRIZ for software architecture in

ScienceDirect.

Mann, D. L. (2008) Systematic(Software) Innovation

IFR Press

Mann, D. L. (2006). Updating TRIZ: 2006-2008

Patent Research Findings, keynote address, 4th

Japanese TRIZ Symposium.

Mann, D. L. (2007). Hands-On Systematic Innovation

For Business & Management, IFR Press.

Mann, D. L. (2011). TRIZ and Software Innovation:

Historical Perspective And An Application Case.

Mann, D. L. (2012) Innovation Capability Maturity

Model: An Introduction, IFR Press,.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

89

Nakagawa T. (2005a). SOFTWARE ENGINEERING

AND TRIZ (structured programming review with

triz),

Nakagawa T. (2005b). SOFTWARE ENGINEERING

AND TRIZ (2) (step wise refinement and jackson

method review),

Ng, D. I. (2013). Innovation in Service Delivery TRIZ

in IT & Retails.

Odintsov, I. (2009). TRIZ methods in SW development

to enhance the productivity

Rea, K. C. (1999) Using TRIZ in Computer Science -

Concurrency, the TRIZ journal

Rea, K. C. (2000a). TRIZ and Software - 40 Principle

Analogies, Part 1, the TRIZ journal.

Rea, K. C. (2000b). TRIZ and Software - 40 Principle

Analogies, Part 2, the TRIZ journal.

Rea, K. C. (2002). Applying TRIZ to Software

Problems -Creatively Bridging Academia and

Practice in Computing, TRIZCON2002.

Rea, K. C. (2005). TRIZ for Software Using the

Inventive Principles.

Sheu, D. D. (2015). Mastering TRIZ Innovation Tools:

Part I, Agitek International Consulting, Inc, 4th

Ed.

Sheu, D. D. and Lee, H.K. (2010). A Proposed

Classification and Process of Systematic

Innovation, International Journal of Systematic

Innovation,1(1) , 3-22.

Song, K. K. (2009). Design of Enhanced software

protection architecture by using theory of

inventive problem solving.

Souchkov, V. (2007-2014). Breakthrough Thinking

With TRIZ For Business And Management: An

Overview, ICG Training & Consulting, retrieved

from www.xtriz.com.

Stamey, J. W. (2006.). TRIZ and Extreme

Programming.

Subramanian, R. (2007) Applying TRIZ in Information

Technology outsourcing.

Tillaart. R.V.D. (2006) TRIZ and Software - 40

Principle Analogies, a sequel.

Toivonen, T. (2014). The continuous innovation model

- combining Toyota Kata and TRIZ.

Wang, S. H. (2011). Software Development and

quality problems and solutions by TRIZ in

ScienceDirect.

Zadesenets, I. (2009). Using TRIZ to Resolve Software

Interface Problems.

Zlotin B and Zusman A. (2005). Theoretical and

practical aspects of development of TRIZ- based

software systems.

 Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

90

AUTHOR BIOGRAPHIES

Dongliang Daniel Sheu is a

Professor at National Tsing Hua

University in Taiwan since 1996.

Before then, he has 9 years of

industrial experience in the

electronic industries with

Hewlett-Packard, Motorola, and

Matsushita. Daniel received his Ph.D. degree in

engineering from UCLA and MBA degree from

Kellogg Graduate School of Management at

Northwestern University. He also holds a B.S.M.E.

degree from National Taiwan University and an

M.S.M.E. degree from State University of New York

at Buffalo. He is currently the President of the

International Society of Innovation Methods,

Honorary President of Society of Systematic

Innovation, Editor-in-chief of the International Journal

of Systematic Innovation, and Area Editor of

Computers and Industrial Engineering Journal. His

areas of interests include Systematic Innovation

(TRIZ++), Innovation Management, Patent Technical

Analysis, Equipment Management, and Factory

Diagnosis.

Usharani Hareesh

Govindarajan currently

teaches in the role of an Adjunct

Assistant Professor in National

Tsing Hua University, Taiwan.

Dr. Hareesh received his

Doctorate from the National Tsing Hua University

from the Department of Industrial Engineering and

Engineering Management, prior to which he received

a Master’s in Engineering in Computer Science from

AUUP (India), and a Master in Science from the Delhi

University (India). His research interests include full

stack software systems integration research, analytics

on patent data for management information support.

Darrell Mann spent 15 years

working at Rolls-Royce and

ultimately becoming Chief

Engineer of the company. He

left the company in 1996 to

help set up a high technology

company spin-out from Imperial College,

London, before entering systematic innovation

research at the University of Bath. He started

using Systematic Innovation in 1992 and teaching

Systematic Innovation methods in1998. Darrell

has given workshops to over 15,000 delegates.

With over 800 systematic innovation-related

papers and articles, plus the best-selling ‘Hands-

On Systematic Innovation’ books, Darrell is now

one of the most widely published authors on the

innovation subject in the world. He is CEO of

Systematic Innovation Ltd, a UK based

innovation company with offices and affiliates in

India, Malaysia, China, Denmark, Turkey,

Australia, US and Austria. Darrell is now

recognised as one of the world’s most prolific

inventors. He is a Professor at the University of

Buckingham in the UK, and Taylor’s University

in Malaysia.

