
 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

72

Review of Systematic Software Innovation Using TRIZ

Usharani Hareesh Govindarajan1*, D. Daniel Sheu1, Darrell Mann2
1National Tsing Hua University, 2IFR consulting

 *Corresponding author, e-mail: hareesh.pillai@ie.nthu.edu.tw

(Received 1 March 2016; final version received 20 March 2019)

Abstract

This paper attempts to review the use of TRIZ, Theory of Inventive Problem Solving, in the field of software innova-

tion. TRIZ finds widespread applications in many fields of engineering such as mechanical, electrical, electronics, chemical,

materials, industrial engineering, etc. Even, TRIZ has its applications in management and strategies. However, the applica-

tions of TRIZ in the field of software engineering to solve problems that arise during phases such as software design, de-

velopment, coding, testing, and maintenance seems to be in its very initial phase. The primary objectives of this paper are to

review and consolidate the current state of the art in the area of TRIZ for software related problems by a literature review.

The current review will help academicians and industry experts to understand the current state and to visualize a possible

future direction.

Keywords: Software TRIZ, Systematic Software Innovation, TRIZification of software, Software TRIZ review.

1. Introduction

Innovation can be viewed as an invention that has

been successfully translated into commercial success. An

invention is an event that helps in finding a better way of

doing things. Inventive thinking or, more generally,

‘creativity’, has traditionally been viewed as a random

occurrence that occurred anywhere from office brain-

storming sessions to coffee breaks to morning showers

-- an ‘anywhere anytime phenomenon’. It was also

assumed that the occurrence of such ‘thinking outbursts’

was untraceable and almost impossible to replicate within

a given timeframe. If ‘invention’ is about the generation

of ‘ideas’, innovation is about the conversion of those

ideas into commercialization. It is well-known that at the

present time, 98% of all innovation attempts are ended in

failure (Mann, 2012). Within the world of Information

Technology, the failure rate is currently slightly worse,

running at a failure rate of 98.5%.

1.1 Systematic Innovation Background

Systematic Innovation (SI) is a field which concerns

about developing or using systematic methods/processes

to generate innovative ideas for Technical, Strategic, or

Business aspects of Opportunity Identification and/or

Problem Solving. (Sheu, 2015). Figure 1 shows a

proposed classification of Innovation Methods (IM) in

which SI is a major part of it. (Sheu, 2015). (Sheu and

Lee 2010). TRIZ is the Russian acronym for “Theory of

Inventive Problem Solving” and is a branch of systematic

innovation with ample support levels available in the

form of community, training, publications and enthusiasts.

TRIZ has circulated around the world fairly successfully

in more than 50 countries as indicated by (Bradford,

2016.) The TRIZ philosophy and applications have been

expanded into various usage fields such as the ones

shown in Figure 2. (Sheu , 2015). (Sheu and Lee, 2010).

Table 1 shows the typical extended application areas of

Modern TRIZ (SI). This paper focuses on the review of

systematic software innovation using TRIZ. This is a

very new area having relative much less developments

compared to other application areas however with great

potential for further developments.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

73

Fig.１ A proposed classification of Innovation Methods

Fig. 2 Hierarchical View of TRIZ (Mann, D. L. 2009, Sheu, D. D. 2015)

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

74

Table 1 Extended Application Areas of Modern TRIZ (SI)

2. TRIZ Philosophy

TRIZ is a philosophy, a set of systematic think-

ing methods, and a set of tools with software. Figure

2 shows a hierarchical view of TRIZ structure. At the

base level, there are many tools for problem-solving.

At the middle level, there is the methodology or pro-

cess, which is a complete problem definition, analysis

and solving process. In the process, it employs the

various tools from the base level at appropriate stages

of the process to define, analyze, and solve problems.

Regardless at the tools level or methodology level,

they are all based on some powerful philosophies

known as Pillars of TRIZ. The traditional TRIZ has

4 philosophies which are Ideality, Resources, Func-

tionality, and Contradiction. (Mann, 2007.) Identified

Space/ Time/ Interface as the fifth pillar of TRIZ.

(Sheu, 2015.) Identified System Transfer and System

Transition as the sixth and seventh pillars of TRIZ.

These are fundamental philosophies that make TRIZ

powerful.

Figure 3 shows a conventional problem-solving

approach in which experiences and trial and error are

used to take a specific problem into specific solu-

tion(s). A typical TRIZ Problem-solving Process is

shown in Figure 4. Traditional problems solved by

TRIZ are problems in technology and engineering

context. Such problems require new, out of the box

solutions unknown before (Souchkov, 2007-2014).

TRIZ philosophy believes that in the center of most

inventive problems lies a contradiction. A contradic-

tion consists of a logical incompatibility between two

or more propositions. TRIZ solves two types of con-

tradictions. The technical contradictions which exist

in the system prevent it from reaching a specific goal

or achieving the desired solution and the physical

contradictions occur when a parameter of the prob-

lematic system has incompatible needs to satisfy

negative requirements, likely opposite requirements.

The TRIZ method aims to eliminate contradictions in

order to solve problems. Technical contradictions can

be solved through 40 inventive principles, while

physical contradictions can be solved through separa-

tion principles which include at least separation in

space, time, system level, relationship, etc.

◼ Identifying Innovative Products & Services

◼ Solving Engineering problems

⚫ New and existing product developments/improvements

⚫ New and existing process/equipment developments/improvements

⚫ Patent circumvention/regeneration/enhancements

⚫ Software innovation

◼ Management/Service Applications

⚫ Establish Innovation Strategies/Business Model innovations

⚫ Service innovation

⚫ Identifying Organizational conflicts & solving them

◼ Combine with other tools to solve problems:

⚫ VE; QFD; FMEA; 6-Sigma tools, Lean, Kepner-Trego; …

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

75

Fig. 3 Conventional Problem Solving Approach

Fig. 4 TRIZ Problem-solving Process

2.1 Some TRIZ tools relevant to software engineering

Innovation involves the deliberate application of

information, imagination, and initiative in deriving

greater or different values from resources, and includes

all processes by which new ideas are generated and

converted into useful products. Systematic innovation is

the process of methodically analyzing and solving prob-

lems with a primary focus on identifying the correct

problem to be solved and then generating innovative

solution concepts Khomenko N. states that in order to be

universal, tools and techniques should be as general as

possible. However, general tools tend to bring general

solutions. The ideas generated are sometimes so general

that it might not be of any practical use. To summarize

we need to customize generic tools to produce highly

optimized results and to customize we need the theoret-

ical background (Khomenko, 2010). This paper aims to

build this theoretical background. The Classical (Rus-

sian) TRIZ methodology contains a host of tools. “A

review of TRIZ and its benefits and challenges in prac-

tice” published in technovation 2013 summarizes widely

used tools (Ilevbare et al. 2013). In this section, an in-

troduction to some tools that can be applied in software

engineering is provided below (Toivonen, 2014).

1. 40 inventive principles - Inventive principles are

generic problem solutions (contradiction elimina-

tion). They are compiled from mining patent da-

tabases and other sources of problems and their

associated solutions. So far according to TRIZ

terminology, there are 40 identified Inventive

principles.

2. Contradiction matrix - A contradiction in the

broadest sense is a problem to be solved. Contra-

dictions are always between one or more parame-

ters that need improvement against one or more

parameters that are a hindrance and prevent the

improvement. The contradiction matrix helps to

reduce or eliminate such contradictions by point-

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

76

ing users to solutions which are known as in-

ventive. Inventive principles are built on the

analysis of technical systems patents. Moreover,

the matrix is a statistical analysis of the use of

these inventive principles in technical domains.

Applying such statistical analysis in another do-

main helps to get a different perspective to

cross-disciplinary problem solving. The general

core concept is that while a problem may be

unique to a given domain the abstract essence of

the problem might have already been solved in

another domain. Statistical analysis helps to un-

derstand this perspective thereby helping to solve

problems.

3. Trends of evolution - TRIZ problem-solving vis-

ualizes evolution as a process that has a finite

point (a point beyond which the need to evolve is

not needed or not possible) Systems evolve with

time through time and trends of evolution tools

help collectively summarize the evolution pat-

terns in various areas, suggest the evolution trend

for a problem. By mapping system’s current state

regarding these trends it is possible to discover

areas where there is a lot of potential for im-

provement.

4. Function and Attribute Analysis (FAA) -FAA is a

technique to form an understanding of the current

state of a system by mapping its elements and

their interactions. FAA also helps to map both the

positive and negative intangibles of a system.

5. Perception Mapping - Perception mapping is a

method for approaching complex problems by

mapping the network that the individual percep-

tions form and identifying which perceptions hold

key positions in that network and focus improve-

ment efforts on those areas.

6. Nine Windows Method (AKA system operator

Method) - helps to look at the problem from dif-

ferent viewpoints regarding time (the past, present,

future) and abstraction level (system, microsys-

tem, macro system) It is flexible and can be used

to understand a problem, discover resources and

generate solutions.

7. Ideal Final Result -This tool allows the mapping

of what perfect looks for different stakeholder

groups regarding different attributes of the system

(like speed, cost, etc.). The results are document-

ed in the matrix where on dimension is formed by

stakeholders and the other by system attributes.

The matrix is useful for identifying contradictions.

Ideality is given the below formula.

Ideality = Σ Benefits / Σ Cost + Σ Harm

8. Resource Tools -By mapping the available re-

sources in a system it is possible to generate solu-

tion ideas that rely on free and/or underutilized

resources. Resources can also act as a trigger for

solutions. Recourses can also be intangible like

human cognitive biases.

2.2 Available TRIZ Software

There have been several attempts over the last

20 years to encapsulate TRIZ heuristics, tools, and

protocols into software tools. This section is a review

on generic TRIZ software’s that have been

pre-customized to solve software engineering prob-

lems. The first of these, ‘TECHOPTIMIZER’ from

Invention Machine and ‘Innovation ‘WORKBENCH’

from Ideation, were very much focused on the codi-

fication of TRIZ ideas from the world of engineering,

and particularly the world of mechanical engineering.

Other tools have subsequently been derived by a

multitude of other players, such as GOLDFIRE by

Invention Machine Corporation (subsequently sold to

HIS Markit), PRO-INNOVATOR by IWIN company,

IDEATION BENCHMARK by Ideation are examples

of commercial software’s available in this domain.

etc. are commercial software’s available in this do-

main. Other derivative software from TRIZ include

‘PATENTINSPIRATION’, which has sought to ob-

scure much of the complexity of TRIZ behind smart

solution search algorithm design. None of these pro-

viders have created any software specifically for the

IT world. There are also a number of individual re-

searchers or teams have developed some proprietary

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

77

software for various TRIZ tools. However, they are

not dedicated for software innovation. So far, the

only place where specific ‘IT-TRIZ’ software tools

will be found are those offered by Systematic Inno-

vation Ltd, in the form of the MATRIX+ and

EVPOT+ (Trends) tools, both of which contain spe-

cifically focused IT-industry problem types and solu-

tion databases

3. Review of Systematic Innovation in Software

Engineering

Information technology (IT) refers to all jobs

that have to do with computing for all aspects of

managing and processing information. IT involves

ever-expanding areas of computing such as the inter-

net, telecom equipment, engineering, healthcare,

e-commerce, computer hardware, software, electron-

ics, semiconductors, and computer services solving

problems. IT problems are problems arising any-

where in the given above list. Troubleshooting is an

example of IT problem. Troubleshooting is often

applied to repair failed products or processes on a

machine or a system. It is a logical, systematic search

for the source of a problem in order to solve it and

make the product or process operational again. Trou-

bleshooting is needed to identify symptoms, deter-

mining the causes and solving it. Software reliability

estimation is another are in computer science where

TRIZ can be applied to increase flexibility, extensi-

bility, and customizability. This section is a review of

systematic publications in line with prior TRIZ ap-

plication to solve software engineering problems

(Domb, 2003). There have been several attempts to

encapsulate TRIZ heuristics, tools, and protocols into

software engineering for a few years now. (Kluender,

2011). (Ng, 2013). This section is a summarization of

such attempts.

Figure 5 shows the events relevant to systematic

software innovation. Systematic innovation saw its

first publicly visible application in the field of soft-

ware engineering in the year 1999 when Kevin C.

Rea applied the technique to solve a concurrency

problem. His observations were published in the

TRIZ journal (Rea, 1999), (Rea, 2000), (Rea, 2002),

(Rea, 2005d). Around then, many academicians, en-

thusiasts, and researchers have applied various TRIZ

tools broadly in the field of Computer Science. This

section is a review of many such prominent works.

Even though many case studies of TRIZ applications

to solve software engineering problems are not

available for the public due to host company's

non-disclosure policies, for clarity sake a timelines

graph below list prominent published works (availa-

ble in open forums and published in English language)

in time order from year 1999 to year 2015 followed

by a short summarization of the publications. Be-

cause of the language barrier, some Korean and Chi-

nese publications are not included in the chart below.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

78

Fig. 5 Timeline of Papers Published

In the year 1999 Kevin C. Rea, a research

scholar and consultant, attempted to break psycho-

logical inertia towards usage of TRIZ in the field of

software engineering by demonstrating a solution to a

software concurrency problem. He used the Su-field

(substance field) analysis and the principles of con-

tradiction in his demonstration which was published

in the TRIZ Journal (Rea, 1999). The next year Rea

published papers in 2 parts which were a conversion

of the 40 engineering inventive principles in Infor-

mation Technology or software context (Rea, 2000).

In 2002 Rea published a paper titled “Applying TRIZ

to Software Problems＂which gave an overview of

various techniques that could be used in inventive

software engineering. The paper also had given an

example of implementing a multisport communica-

tions buffer using Su-field model. Thereby starting

off a new area of applying TRIZ in software engi-

neering, some experts also consider Rea’s work as

the beginning of software TRIZification.

In the year 2004, Fulbright published a paper ti-

tled “TRIZ and Software Fini” which was an exten-

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

79

sion of Rea’s work of 2001. The paper demonstrated

software context of a few inventive principles whose

equivalence was not given by Rea in his earlier work

(Fulbright, 2004). The work was followed by Herman

Hartmann, Vermeulen and Martine Van Beers. In

their paper titled “Application of TRIZ in Software

Development” supported the discussion on the sub-

ject how software engineering can also use TRIZ

philosophy to solve problems. The publication fo-

cused on area’s centric to software engineering such

as Inventive Principles, Fast Algorithms, Moore’s

law, software size, architecture development and

trends of technological evolution (Hartmann et al.,

2015.)

Darrell Mann in the year 2004 through his arti-

cle in TRIZ journal gave an introduction to the field

of science with a comparative example of software

versus a mechanical engine system. He also custom-

ized TRIZ pillars and contradiction matrix according

to software requirements. The subject context of

Darrell Mann was expanded in his book “Systematic

Software Innovation” published in the year 2008

(Mann, 2008).

Kevin C. Rea in the year 2005 published the

paper “TRIZ for Software Using the Inventive Prin-

ciples” the objective of writing up was to showcase

an example thereby breaking some amount of psy-

chological inertia towards problem-solving using

TRIZ. The contradictions that the example dealt with

are “waste of time” against "accuracy of manufactur-

ing” and the solution was stated via inventive princi-

ples numbered 24 mediator and 26 copying (Rea,

2005). Toru Nakagawa, a Japanese innovation scien-

tist, in the year 2005 wrote a two-part paper (Nak-

agawa, 2005a,) (Nakagawa, 2005b). The first part

titled “Software Engineering and TRIZ (structured

programming review with TRIZ)” explains the con-

cept of structured programming with center around a

workaround for go-to statements used in program-

ming constructs. "Go-to-less programming from the

TRIZ prospective". TRIZ principles 1 (Segmentation),

6 (Universality), 7 (Nesting) were used for making

the program easy to understand and advocated

'Structured Programming‘. The second part titled

“Software Engineering and TRIZ (2) (stepwise re-

finement and Jackson method review)” is a refine-

ment of Jackson’s method of structured programming

in correlation with TRIZ along with some discussion

on ‘Prior-reading technique’. TRIZ principles like

Segmentation, Local Quality, Intermediary, Prior

Action, and Homogeneity have been used to make

the comparison.

Boris Zlotin and Alla Zusman in the year 2005

published a paper, “Theoretical and practical as-

pects of the development of TRIZ- based software

systems,” which in detail describes the need for TRIZ

software and the people who needed to develop such

systems with the requirement’s and Consideration's

need to make it keep in mind while building such

systems (Zlotin and Zusman, 2005). TRIZ and

Software - 40 Principle Analogies, a sequel published

by Tillaart in the 2006 is an analogy of 40 inventive

principles explained in a software context (Tillaart,

2006). The work is an updated analogy of Rea’s work

with some extra consolidations and value in the form

of examples. A similarity study between Altshuller's

40 inventive principles and software design patterns

by Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides also known as "The gang of four"

(Domb and Stamey, 2006).. The paper discusses

time-space trade-off followed by a similarity study of

design patterns with TRIZ such as adapter pattern

with principle of mediator, bridge pattern with ex-

traction principle, composite and iterator pattern with

principle of universality, decorator pattern with the

principle of nesting, flyweight pattern with the prin-

ciple of transition to a new dimension and proxy pat-

tern with the principle of parameter change

John W. Stamey published TRIZ and Extreme

Programming (XP) which is an introduction to Wa-

terfall model of software development with a com-

parative study of XP model to TRIZ Inventive Prin-

ciples (Stamey, 2006). An Information Technology

outsourcing analogy to 40 inventive principles under

the paper titled “Applying TRIZ in Information

Technology Outsourcing” by Ramkumar

Subramanian in the year 2007 has discussions

on various laws in reference to inventive problem

solving and its outsourcing equivalence (Subramani-

an, 2007).

“Research and Application of the TRIZ Con-

tradiction Matrix in OOD” by Jianhong Ma published

in the year for the field of object-oriented software

design is proposed, paper further deals with the ab-

straction of parameters in object-oriented software

design, construction of contradiction matrix, the ap-

plication of the matrix and the establishment of de-

sign patterns. "TRIZ methods in software develop-

ment to enhance the productivity" by Igor Odintsov

published in the year 2009 shows TRIZ tool applica-

tion in various Software Development Life Cycle

stages (Odintsov, 2009)."A Conflict-based model for

problem-oriented software Engineering and its appli-

cations solved by dimension change and use of in-

termediary " published by Jung Suk Hyun in the year

2009 deals with problem-oriented software engineer-

ing via an author specified problem-solving model

named butterfly model (Hyun, 2009). The paper also

solves a shopping cart problem using the proposed

model.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

80

"Design of enhanced software protection archi-

tecture by using the theory of inventive problem

solving” published by song- kyoo kim in the year

2009 is on the stochastic software protection using

closed queues with unreliable backup(Song, 2009).

The paper performs stochastic multilayer software

protection analysis and random backup module pro-

tection based on TRIZ contradiction principles 1, 10

and 11."Using TRIZ to resolve software interface

problems” published by Igor Zadesenets in year 2009

is a description to the problem-solving process using

TRIZ (Zadesenets, 2009). The TRIZ models in the

discussion here are the object-relationship model and

the cause-effect model and how software problems

can be solved using TRIZ methods. "Software De-

velopment and quality problems and solutions by

TRIZ” published by Su-Hua Wang in the year 2011

is a description of quality problems in the field of

software engineering and its solution using TRIZ

(Wang, 2011). The paper discusses TRIZ fundamen-

tals and tools followed by problems in software de-

velopment followed by the applicability of TRIZ in

software problems in broad scale.

“TRIZ for software architecture” (Mann, 2011)

describes inventive principles and the contradiction

matrix in a software context. The paper

re-architectured a flight simulator using TRIZ tools

with similarity analysis of software quality attributes

with technical parameters of a contradiction matrix

and future scopes of these tools were proposed.

“TRIZ and Software Innovation” by Darrell

Mann in the year 2011 gives a historical timeline

style review of innovation in the field of computer

science. The discussion is on 26 newly uncovered

patterns for discontinuous software evolution which

are placed under 3 groups namely physical, temporal

and interfacial. The paper concludes with a case

study of unmanned ariel vehicle control systems to

enhance operational capability by using TRIZ con-

tradiction matrix.

CRAFITTI consulting an innovation think tank

distributed a comprehensive online presentation in

the year 2011 titled "TRIZ for software innovation"

which discusses various aspects of software innova-

tion like patent analysis, elements of TRIZ contradic-

tion, ideal final result development philosophy, and

various trends laws of evolution and some advices on

how to embed TRIZ into an enterprise. “Analyzing

object models with theory of innovative solution” by

S. B. Goyal published in the year 2012 gives a

co-relation to Object Oriented Modeling Paradigm

and TRIZ applicability in Object-Oriented Environ-

ment (Goyal, 2012). The paper gives an introduction

to Object Orientation and Modeling technique UML

(Unified Markup Language) and TRIZ. The paper

concludes with a process of applying TRIZ to prob-

lem-solving in object-oriented modeling

A comprehensive presentation titled "Innovation

in service delivery TRIZ in IT and retails" by Ir Dan-

iel Ng available online from November 2013.The

presentation starts with an introduction to TRIZ basic

contradiction and the inventive principle is covered

followed by few case studies. The presentation also

contains various publication details in TRIZ and con-

cludes with case sharing about internet mining and

retail industry.

3.1 Review Consolidation

The review which takes into account publica-

tions since 1999 shows the most explored areas in

TRIZ for software suggests contradiction matrices

and inventive principles as the most popular areas of

exploration as shown in Table 2. Detailed expan-

sions of these attempts is in the earlier section..

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

81

Table 2 Areas of TRIZ exploration in software context

3.2 Book Review

The time order of some relevant books regarding to systematic software innovation is shown in Figure 6.

Fig. 6 Time Order of Books (Published in English Language)

Some contexts of the books are briefed below.

A. Systematic Software Innovation by Darrell L.

Mann

Darrell Mann has integrated various TRIZ techniques

and philosophy in this book which was re-written

several times the final draft was published in 2004.

The book is targeted towards the software engineer-

ing area and is a guide for professionals wanting to

apply TRIZ in software engineering domain.

B. TRIZ Principles for Information Technology by

Uma Kant Mishra

The books started as a manuscript presented in

TRIZCON-2007. The response to the manuscript was

overwhelming from around the world. The book

summarizes how inventive principles can be used in

IT domain by demonstrating patent analysis, case

studies and pictorial examples against each principle

of the invention. The book was also acclaimed highly

by Toru Nakagawa of japan and was translated in the

Japanese language later.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

82

C. Improving Graphical User Interface using TRIZ

by Uma Kant Mishra (published in the year 2009)

The book is for GUI designers and TRIZ researchers.

Graphical user interfaces have become critical to the

interaction element in almost all products even

though there is a great improvement in GUIs used a

generation earlier there still are limitations. TRIZ

principles like “Ideality”, “Functionality”, “Trends”,

"Contradictions", “Inventive Principles” etc. could be

used to solve such problems. The book cites more

than 100 inventions from US Patent Database and

explains how the contradictions in the prior art

methods have been overcome by applying very sim-

ple but innovative concepts.

D. Using TRIZ for Anti-Virus Development - Build-

ing Better Software through Continuous Innovation

by Uma Kant Mishra.

"Using TRIZ for Anti-Virus Development" is a book

by Uma Kant Mishra, on the application of TRIZ

Techniques for improving the Anti-Virus technology.

The book demonstrates how various techniques of

TRIZ, including Contradictions, Inventive Principles,

Inventive Standards, Ideality, Su-Fields, Resources,

and Trends of Evolution etc. are useful for taking the

Anti-Virus technology forward to the next generation.

4. Current State

The preceding descriptions of activities and

milestones concerning the convergence of TRIZ and

‘software’ suggests that the level of effort has been

considerable. Even a cursory examination of the

world of IT professionals, however, would rapidly

reveal that the impact of this effort has been minimal.

The large majority of IT professionals, in other words,

will still have never heard of TRIZ. Refer to Figure 7

In terms of the Gartner Hype Cycle (Fenn et al. 2008),

neither TRIZ nor its ‘Systematic Innovation’ succes-

sor would be perceived to have entered even the

‘technology trigger’ start point of the curve. This fact

should provide some clues as to the likely future

scope for TRIZ/SI activities in the software world.

Before we enter that discussion, however, it is

worthwhile to exploring some of the possible reasons

why TRIZ/SI has not yet been viewed as a ‘Technol-

ogy Trigger’ within the world of IT.

TRIZ-for-Software

today

visibility

Fig. 7 Hype cycle and ‘TRIZ/SI for Software’ position

A review of the previously discussed TRIZ and

software literature from Section 3 of this paper re-

veals two distinctly different approaches to the chal-

lenge of applying TRIZ to problems and challenges

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

83

within the IT world. The first of these approaches is

to be found in nearly all of the texts discussed. It is an

approach based on re-application of already estab-

lished TRIZ tools, protocols, and procedures to IT

problems. In theory there is nothing wrong with this

strategy since a large part of the basic premise of

TRIZ is ‘someone, somewhere already solved your

problem’ and so an analogous problem in the world

of, say, mechanical engineering, should according to

the theory provide solution clues to a person working

in the IT sector. In the case of truly universal findings

like the 40 Inventive Principles this ‘analogous

worlds’ assumption has proved to be valid. An

extensive investigation by multiple authors has failed

to reveal a ‘41st Principle’ that is found in the world

of software that is not found in any other sector

(Tillaart, 2006).

 Beyond this finding, however, the relevance of

the analogical approach has been found to be ex-

tremely limited. Attempts to apply the classic

Altshuller’s Contradiction Matrix – a tool created in

1973 by the software industry even existed – is virtu-

ally meaningless since the 39 parameters that make

up the sides of the Matrix bear little, if any, resem-

blance to parameters that a software engineer would

consider to be relevant. Similar disconnects can be

observed with attempts to deploy the TRIZ S-Fields

and Inventive Standards tools: the level of abstraction

required for software engineers to meaningfully use

the tools is significant. Considerable enough at least

that were a software engineer new to TRIZ to acci-

dently read one of the papers or articles on the sub-

ject their likely reaction would be either, a) this has

absolutely nothing to do with me, or, probably more

likely, b) the solution being proposed in this case

study is a really bad solution to the problem and so

the method through which the solution was derived

must therefore also be bad. Which is a way of saying

that there are few, if any, published papers that con-

tain anything that a software engineer would think to

be a ‘good solution’? Not to mention the fact that in

the large majority of published cases, the mediocre

result was not derived by actually using TRIZ in the

first place.

When Mann and the Systematic Innovation

Company entered the world of software through the

eventual publication of the Systematic (Software)

Innovation book, it was the result of an extensive

research, commenced in 1999, to go back to the

original TRIZ philosophy and to actually analyze

hundreds of thousands of breakthrough software so-

lutions. Three big things emerged from this dec-

ade-long and still going research:

a) The large majority of the classical TRIZ tools were

meaningless in the context of software problems.

Making an analogous connection between a pa-

rameter in the 39x39 Altshuller Contradiction

Matrix and a software problem might generate

some Inventive Principle solution suggestions, but

these suggestions would be largely irrelevant to the

specific problem at hand. (Mann, D. L. 2008)

reports an average relevance of less than 20%. If

the TRIZ tools were to ever become relevant to

software engineers, new research and new tools

would need to be created.

b) Working with actual software engineers and ex-

amining the sorts of problems they encounter

during their work it very quickly became clear that

their biggest problem was not knowing what the

problem was. The roots of this problem come from

the prevailing software industry challenge of the

gap between the software architects and coders and

their system ‘customers’. The customers tending to

not know what’s possible, and the coders not

knowing what their output is actually going to be

used for. A big part of this gap may be seen to

involve the ‘unspoken’ – lack of tacit knowledge

and lack of understanding of the emotional drivers

that affect peoples’ behavior.

c) Also through the experience of working with

software engineers, whenever they do encounter a

problem it is very rarely what might be classified

as a ‘software problem’. Far more likely was that

the problem was a management problem or a

problem with the supporting technical systems

which the software was expected to control. Once

a solution could be configured, it could almost

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

84

always be coded. The need for solving ‘coding’

problems was and still is very much the exception

rather than the rule.

As a consequence of these findings, the archi-

tecture of the Systematic Software Innovation book

changed considerably compared to other TRIZ tomes

(section 3.2, Book A). Firstly it compiled together all

of our research findings to build software-bespoke

new tools. Second, and more importantly, it intro-

duced new tools and approaches from outside TRIZ

that would better assist software engineers in under-

standing their real customer needs rather than the

ones contained in the specifications they published.

Despite all of the time and effort that went into

the production of the Systematic Software Innovation

text and associated software tools, it has made a very

little impact beyond a small number of IT service

organizations. Perhaps not surprisingly this disap-

pointing outcome has provoked a significant addi-

tional program of research to reveal the underlying

reasons for this lack of recognition by the software

community on TRIZ and the new suite of Systematic

Innovation tools.

One thing for sure is that there is no shortage of

innovation attempts taking place in the IT world.

Figure 8 shows another version of the Hype Cycle,

this time showing the relative positions of some of

those attempts along the cycle. To the best of the au-

thors’ knowledge, none of these attempts has made

any use of TRIZ/SI. They are all innovation attempts

borne of a perceived customer need followed by tri-

al-and-error solution finding. Given the choice of

deploying a repeatable innovation process (e.g. TRIZ)

or using trial-and-error, most industries would tend to

opt for the more efficient approach. So, paradoxically,

the IT world – which is one of the most innovative on

the planet right now – is the one showing the least

inclination to using more efficient processes. Why

might this be?

One very logical answer to the question might

be that trial and error works in the virtual world be-

cause it is possible to make very rapid solution itera-

tions at negligible cost when compared to what needs

to occur to make a solution iteration in the physical

world.

Another one is that ideas spread much faster in

the virtual world. No sooner has one coder found an

interesting solution to a customer need, every other

coder in the vicinity is able to see what has been done

and is able to easily reproduce it. Helped in no small

part by the fact that in most parts of the world it is

very difficult to protect the IP that might be associat-

ed with a new piece of software.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

85

Fig. 8 Assorted IT Industry Innovation Attempts on the Hype Cycle

Taken together, these two factors perhaps indi-

cate that the world of IT innovates ‘well enough’ al-

ready without the need for any kind of systematic

process. We will return to that thought in the next

section of the paper. Before that, however, we will

make a small diversion to investigate what TRIZ and

Systematic Innovation might have to tell us about the

likely future direction and evolutionary potential of

the software.

4.1 The ‘Ideal’ Software?

One of the pillars of TRIZ/SI is that all systems

evolve in a direction of increasing ideality towards an

‘Ideal Final Result’ destination defined as the point

when the system delivers all of the desired benefits

(‘functions’) with zero negatives (typically defined as

‘costs’ and ‘harms’). Because fundamentally, as a

system becomes more ideal, the number of effective

solution possibilities becomes progressively smaller.

This is counter-intuitive for most players and nearly

all industries. Refer to Figure 9, what it in effect

means, if we plot an evolution story that connects

current players with the evolutionary end point, it

quickly becomes possible to identify the likely win-

ners and losers. The Figure shown here for the IT

industry as a generic whole makes no attempt to be

comprehensive in terms of mapping a compendium

of current players on the left-hand-side of the image,

but it does contain the current biggest ones – the pri-

mary one being the IT Services industry and the mil-

lions of coders that work within it – and also the ones

that will inevitably eventually supersede them. If the

‘ideal’ software, on the right-hand point of the cone,

does everything it needs to do ‘by itself’ (is ‘autopoi-

etic’ in the vernacular), then fundamentally it does

not require programmers to create it anymore.

Software Developers that aren’t associating them-

selves with the emerging worlds of affective compu-

ting, or Big Data Analytics or expert systems and

genetic algorithms beware, evolutionary convergence

clearly says your days are numbered.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

86

Perfect

Today

Achieve the FUNCTION

with zero cost or harmexpert-systems/

genetic algorithms

IT Services/human coders

Big Data Analytics Autopoeisis: software

defines itself, creates itself,

maintains itself, updates

itselfaffective computing

libraries/meta-code

quantum computing

Fig. 9 Convergent Evolution of the IT industry towards its ‘Ideal Final Result’

So much for the evolutionary destination of

‘software’ and the software creation industry, we now

shift the focus of attention to the Trends part of the

TRIZ story in order to examine some of the key evo-

lutionary jumps that the industry will likely make

during the journey towards the autopoietic ‘ideal final

result’ destination.

4.2 Evolution Potential

The original TRIZ research into the evolution of

systems found within the physical world uncovered a

number of patterns of evolution that have subse-

quently come to be described as the ‘Voice of the

System’, or ‘signposts’ that direct innovators towards

ideal solutions. The Systematic Software Innovation

research program sought to identify whether there

were equivalent signposts to be found in the IT in-

dustry EvPot+ software analog contains 26 such

evolution patterns. A parallel piece of research to do

the same job in the world of business and manage-

ment uncovered 32 (so far) patterns in that describe

the evolution directions of an enterprise (Mann,

2009). Figure 10 illustrates a composite of Trend

patterns from the IT and business worlds that are rel-

evant to the IT industry.

Customer Expectation

Human Decision Making

Customer Intangibles

Market Understanding

Fig. 10 Composite Evolution Potential Radar Plot of IT Industry

As is the usual convention with the resulting

‘Evolution Potential’ plot, each Trend is represented

by a spoke on the radar plot, and the plot details how

far along a particular trend the industry has a whole

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

87

has thus far evolved. At this point in the evolutionary

history, some 65% of the Evolution Potential has

been utilized. Which in turn means that 35% of the

possible evolution jumps the industry could make

have thus far not been exploited. What might some of

this untapped potential be able to tell innovators

about the future likely solution directions of the in-

dustry as a whole? Again, this is a question that goes

beyond the scope of the purpose of this paper, but by

way of helping us to answer the earlier stated ques-

tion about the future of innovation methods within

the IT world, here are a few clues provided by the

Trends:

1. Controllability Trend – software takes on pre-

dictive (‘feed-forward’) capabilities in order to

anticipate its own future needs, and eventually

becomes autopoietic.

2. Reducing Human Involvement Trend – human is

progressively removed from the system at both

the coding, but also specifier and customer ends

of the value chain

3. Customer Intangibles Trend – software is in-

creasingly capable of tapping into the emotional

and ‘unspoken’ real needs of customers and us-

ers

4. Nesting (Up) Trend – software is increasingly

integrated into higher level systems; source code

becomes absorbed into higher level ‘me-

ta-languages’ (Mathematica, et al, where the

user is able to design algorithms without ever

having to learn how to code)

5. Design For Robustness Trend – the software

evolves to become more and more error-proof, to

eventually become ‘anti-fragile’ – attempts to

break the system end up making the system

stronger

6. Trimming Trend – all of the superfluous software

(the IT Services industry right now might be

thought of as millions of smart people

re-inventing the same basic wheels) will be

‘trimmed’ from systems such that what is left

delivers all of the intended capability without

unneeded excess.

7. Customer Expectation Trend – the software

industry will shift from ‘service’ to ‘experience’

(taking care of the intangibles) to, eventually,

‘transformation’, at which point it will take over

the responsibility for delivering the intended

outcomes from the customer.

8. Design Point Trend – the software algorithms

will learn how to adapt and reformulate them-

selves according to different operating re-

gimes…

9. Knowledge Trend - …until eventually it will be

able to sense and adapt to the prevailing and

emergent contexts of a given user situation.

And so with these clues firmly at the fore of our

thinking, back to our final question…

5. Future Scope

Will TRIZ/SI ever find a role in the IT world?

The answer to this question has to be yes. The answer

is clear since Systematic Innovation fundamentally

encapsulates a host of ‘universal truths’ – everything

evolves towards an ideal end state, and will do so

through a series of contradiction-solving, discontin-

uous (s-curve) jumps that follow a set of Evolution-

ary ‘Laws’. In this sense, the IT world is no different

from the physical world (Mann, 2011).

Beyond that high-level similarity, however, the

virtual and physical worlds diverge considerably in

the manner in which innovation happens. In the

physical world, efficiency is important and every new

solution iteration is expensive, requiring considerable

human activity to make things happen. Consequently,

it is important that enterprises looking to innovate in

the physical world provide those expensive people

resources with appropriate innovation efficiency

raising skills. Training thousands of people in

TRIZ/SI makes sound economic sense in this context.

In the virtual world, where ideas transfer very

quickly, there is far less justification for training large

numbers of people. ‘All’ that is required is that a

small number of people are skilled in the universal

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

88

truths of TRIZ/SI to be able to encode them into sys-

tematic creativity algorithms.

There is a considerable irony in this story. TRIZ

is and has always been about distilling the ‘DNA’ of

innovation. Altshuller himself published a book

called ‘The Innovation Algorithm’. Having created at

least the start of such an algorithm, it becomes highly

code-able. And the moment it does become coded

and the IT world is presented with even the start of a

meaningful ‘computer-aided innovation’ capability –

especially one also equipped with (highly predictable)

‘self-updating’ capacity – then it removes the need

for thousands of coders to do the creativity and inno-

vation solution generation job manually. Paradoxi-

cally, by working out the ‘innovation algorithm’,

TRIZ has ruled out the likelihood of widespread

TRIZ deployment. At least from a visi-

ble-to-the-lay-person perspective. Most coders will

never come to hear about TRIZ, but much of TRIZ

will come pre-coded into the software kernels they

get to work with. Only an elite few need ever know

the ‘Innovation DNA’ to be able to upload it into

tomorrow’s software systems. The IT services sector

is already hitting fundamental contradictions associ-

ated with increasing competition and reducing mar-

gins. In the West, the contradiction has been evident

for a number of years already – as evidenced by the

extraordinary amount of outsourcing of code devel-

opment work to the developing parts of the world.

But because the contradiction is present and causing

pain, there is every incentive to resolve it by inno-

vating the software development process such that, as

outlined in the previous section. Software that

‘writes-itself’, ‘maintains itself, and ‘updates-itself’

solves massive business challenges for western or-

ganizations and so they have every incentive to

derive and create such solutions. The recent release

of TRIZ-based software systems like PanSensic be-

ing a case in point. Once a customer has installed a

smart PanSensic dashboard, they are already halfway

to automatically revealing future innovation opportu-

nities and using the Trends and Inventive Principles

to generate solutions. All without any need to teach

any of their personnel anything at all about TRIZ.

The authors believe that the future of TRIZ in

the IT world is assured. Just not through training

thousands of coders. But rather by being the first and

best to encode the universal truths TRIZ research has

revealed into a Systematic Software Innovation algo-

rithm.

The big outstanding challenge in that world is

how the inherent (monetary) value that comes

through the TRIZ knowledge can be captured. In the

physical world, it has been possible to capture at least

a part of the monetary value of it through training

large numbers of people, publishing books and sell-

ing TRIZ-based software tools. These models fun-

damentally can’t and won’t work in the virtual world.

Millions of software engineers cannot be allowed to

continue reinventing the same wheels because cus-

tomers increasingly cannot afford them. There is,

therefore, enormous business pressure to evolve

software creation capability in the autopoietic direc-

tion. Perhaps we should contemplate inserting that

challenge into the Systematic Software Innovation

algorithm?

6. Conclusion

Collaboration between different professionals is

more and more necessary now (Khomenko, 2010).

Systematic innovation can help in this constructive

collaboration. TRIZ is expected to play a major role

in the design and development of software systems

providing new capabilities that far exceed today’s

levels of autonomy, functionality, usability and relia-

bility. TRIZ absorption can be accelerated by close

collaboration between academics and industry. This

review paper provides detailed introduction to sys-

tematic innovation followed by brief introduction to

TRIZ with a review of key tools inside the frame-

work. An analysis of commercial and academic TRIZ

software is presented next followed by a detailed

literature review of systematic innovation in software

engineering, finally views of subject matter experts in

TRIZ area are presented to understand the current

state of TRIZ application in software engineering and

future scope. The authors hope that the review in this

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

89

paper will help academicians, researchers and soft-

ware companies understand the current industry dy-

namics and help achieve investments in TRIZ for

enhancing their existing and future software devel-

opment process and products.

7. References

Bradford, G. (2016). TRIZ is now practiced in 50

countries. Machine Design, March 21, 2016.

http://machinedesign.com/contributing-technical

-experts/triz-now-practiced-50-countries, ac-

cessed on April 21, 2016.

Domb, E. (2003.) TRIZ for Non-Technical Problem

Solving, The TRIZ journal Apr.

Domb E and Stamey J. W. (2006). Describing Design

patterns in software engineering.

Fenn, J. and Rascino, M. (2008). Mastering The Hype

Cycle: How To Chose The Right Innovation At

The Right Time, Harvard Business School Press.

Fulbright, R. (2004). TRIZ and Software Fini.

Goyal, S. B. (2012). Analyzing Object Model with

Theory of Innovative solution.

Hartmann H, Vermeulen and Beers M. V. (2004) Ap-

plication of TRIZ in Software Development.

Hyun, J. S. (2009). A Conflict-Based Model for

Problem-Oriented Software Engineering and Its

Applications Solved by Dimension Change and

Use of Intermediary.

Ilevbare, M. I, Probert D and Phaal R (2013) A re-

view of TRIZ, and its benefits and challenges in

practice.

Khomenko, N(2010). Keynote presentation for 6th

TRIZ symposium in Japan, Tokyo. September

2010

Kluender, D. (2011). TRIZ for software architecture

in ScienceDirect.

Mann, D. L. (2008) Systematic(Software) Innovation

IFR Press

Mann, D. L. (2006). Updating TRIZ: 2006-2008 Pa-

tent Research Findings, keynote address, 4th

Japanese TRIZ Symposium.

Mann, D. L. (2007). Hands-On Systematic Innova-

tion For Business & Management, IFR Press.

Mann, D. L. (2011). TRIZ and Software Innovation:

Historical Perspective And An Application Case.

Mann, D. L. (2012) Innovation Capability Maturity

Model: An Introduction, IFR Press,.

Nakagawa T. (2005a). SOFTWARE ENGINEERING

AND TRIZ (structured programming review with

triz),

Nakagawa T. (2005b). SOFTWARE ENGINEERING

AND TRIZ (2) (step wise refinement and jackson

method review),

Ng, D. I. (2013). Innovation in Service Delivery TRIZ

in IT & Retails.

Odintsov, I. (2009). TRIZ methods in SW develop-

ment to enhance the productivity

Rea, K. C. (1999) Using TRIZ in Computer Science -

Concurrency, the TRIZ journal

Rea, K. C. (2000a). TRIZ and Software - 40 Principle

Analogies, Part 1, the TRIZ journal.

Rea, K. C. (2000b). TRIZ and Software - 40 Principle

Analogies, Part 2, the TRIZ journal.

Rea, K. C. (2002). Applying TRIZ to Software Prob-

lems -Creatively Bridging Academia and Prac-

tice in Computing, TRIZCON2002.

Rea, K. C. (2005). TRIZ for Software Using the In-

ventive Principles.

Sheu, D. D. (2015). Mastering TRIZ Innovation Tools:

Part I, Agitek International Consulting, Inc, 4th

Ed.

Sheu, D. D. and Lee, H.K. (2010). A Proposed Clas-

sification and Process of Systematic Innovation,

International Journal of Systematic Innova-

tion,1(1) , 3-22.

Song, K. K. (2009). Design of Enhanced software

protection architecture by using theory of in-

ventive problem solving.

Souchkov, V. (2007-2014). Breakthrough Thinking

With TRIZ For Business And Management: An

Overview, ICG Training & Consulting, retrieved

from www.xtriz.com.

Stamey, J. W. (2006.). TRIZ and Extreme Program-

ming.

Subramanian, R. (2007) Applying TRIZ in Infor-

mation Technology outsourcing.

Tillaart. R.V.D. (2006) TRIZ and Software - 40 Prin-

ciple Analogies, a sequel.

Toivonen, T. (2014). The continuous innovation mod-

el - combining Toyota Kata and TRIZ.

Wang, S. H. (2011). Software Development and qual-

ity problems and solutions by TRIZ in Sci-

enceDirect.

Zadesenets, I. (2009). Using TRIZ to Resolve Soft-

ware Interface Problems.

Zlotin B and Zusman A. (2005). Theoretical and

practical aspects of development of TRIZ- based

software systems.

 10.6977/IJoSI.201903_5(3).0006

Usharani Hareesh Govindarajan, D. Daniel Sheu, Darrell Mann /

 Int. J. Systematic Innovation, 5(3), 72-90 (2019)

90

AUTHOR BIOGRAPHIES

Dongliang Daniel Sheu is a Pro-

fessor at National Tsing Hua Uni-

versity in Taiwan since 1996. Be-

fore then, he has 9 years of indus-

trial experience in the electronic

industries with Hewlett-Packard,

Motorola, and Matsushita. Daniel received his Ph.D.

degree in engineering from UCLA and MBA degree

from Kellogg Graduate School of Management at

Northwestern University. He also holds a B.S.M.E.

degree from National Taiwan University and an

M.S.M.E. degree from State University of New York at

Buffalo. He is currently the President of the Interna-

tional Society of Innovation Methods, Honorary Presi-

dent of the Society of Systematic Innovation, Edi-

tor-in-chief of the International Journal of Systematic

Innovation, and Area Editor of the Computers and In-

dustrial Engineering Journal. His areas of interest in-

clude Systematic Innovation (TRIZ++), Innovation

Management, Patent Technical Analysis, Equipment

Management, and Factory Diagnosis.

Usharani Hareesh Govindara-

jan currently teaches in the role

of an Adjunct Assistant Profes-

sor in National Tsing Hua Uni-

versity, Taiwan. Dr. Hareesh

received his Doctorate from the

National Tsing Hua University

from the Department of Industrial Engineering and

Engineering Management, prior to which he received a

Master’s in Engineering in Computer Science from

AUUP (India), and a Master in Science from the Delhi

University (India). His research interests include full

stack software systems integration research, analytics

on patent data for management information support.

Darrell Mann spent 15 years

working at Rolls-Royce and ulti-

mately became Chief Engineer of

the company. He left the company

in 1996 to help set up a

high-technology company spin-out

from Imperial College, London, before entering sys-

tematic innovation research at the University of Bath.

He started using Systematic Innovation in 1992 and

teaching Systematic Innovation methods in 1998. Dar-

rell has given workshops to over 15,000 delegates.

With over 800 systematic innovation-related papers

and articles, plus the best-selling ‘Hands-On Systemat-

ic Innovation’ books, Darrell is now one of the most

widely published authors on the innovation subject in

the world. He is CEO of Systematic Innovation Ltd, a

UK-based innovation company with offices and affili-

ates in India, Malaysia, China, Denmark, Turkey, Aus-

tralia, US and Austria. Darrell is now recognised as one

of the world’s most prolific inventors. He is a Professor

at the University of Buckingham in the UK, and Tay-

lor’s University in Malaysia.

