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Abstract 

 

Deep learning methods with convolutional neural network (CNN) models have increasingly been applied to facial 

expression recognition. However, due to the recent pandemic, many individuals wear masks for work or health reasons, 

obstructing the complete visibility of their faces. This can impact social interactions, particularly in areas involving 

facial expression cues like the mouth. This study explores the application of CNNs in identifying facial expressions 

obscured by masks, focusing on the VGG16 and MobileNet architectures. Additionally, the research investigates the 

effects of data augmentation, including geometric and brightness augmentation, on the accuracy of facial expression 

classification. The findings indicate that the VGG16 architecture with cross-validation (VGG16-FLCV) outperforms 

MobileNet-FLCV in recognizing and classifying masked facial expressions. Data augmentation, particularly 

brightness augmentation, significantly enhances CNN model performance. For the VGG16-FLCV architecture, the 

brightness range (1.00, 1.25) yields the best accuracy, with a training accuracy of 81.73% and a validation accuracy 

of 70.71%. The most optimal brightness ranges for VGG16-FLCV are in the dark category (0.25, 0.50), (0.50, 0.75), 

and (0.75, 1.00), as well as the bright category (1.00, 1.25). Meanwhile, MobileNet-FLCV with brightness ranges 

(0.25, 0.50), (0.50, 0.75), (0.75, 1.00), (1.00, 1.25), and (1.25, 1.50) can be used as alternative brightness ranges 

without significant accuracy degradation. These findings provide valuable insights for improving the accuracy of 

masked facial expression recognition by applying appropriate data augmentation techniques. 
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1. Introduction 

Deep learning is a subset of machine learning. 

Therefore, it can be said that deep learning consists of 

a neural network with many layers and parameters. 

Most deep learning methods use a neural network (NN) 

architecture called deep NNs (Shinde & Shah, 2018). 

The application of deep learning methods has 

gained prominence, particularly in facial expression 

recognition (FER). Most FER systems attempt to 

recognize expressions from a person’s entire face. 

However, due to the pandemic in recent years, some 

people still wear masks to work or due to illness that 

requires them to wear a mask, which prevents their 

face from being fully visible (Castellano et al., 2021). 

The use of face masks has a negative effect. 

Psychologists report that it can confuse the reading of 

expressions, especially in the mouth region, which is 

very informative to help distinguish between 

expressions of sadness, disgust, fear, and surprise, 

thereby affecting social interactions (Yang et al., 2021).  

There is research on classifying facial 

expressions with masks based on deep learning 

approaches. Grundmann et al. (2021) employed a 

strategy analytic approach using a multilevel 

regression model (logistic) to examine the effect of 

mask use on social judgment, investigate what facial 

cues are lacking when using masks to reduce 

expression recognition and explore how expression 

valence and associations related to the use of masks 

influence social judgment. Yang et al. (2021) proposed 

a facial expression type classification system for 

masked individuals based on a deep learning approach 

that applies convolutional neural network (CNN) 

models with MobileNetV2 and VGG19 architecture 

types. This research uses the M LFW-FER and M-

KDDI-FER datasets, which have three types of facial 

expressions: positive, neutral, and negative. Hence, 

the masked facial expression classification process 

only considers facial expression classification with 

three expression categories. In addition, Castellano et 

al. (2021) used the CNN method with VGG16 and 

MobileNetV2 architecture types to recognize 



DOI: 10.6977/IJoSI.202502_9(1).0003 

D.M. Ramadhan, H. Mubarok, etc./Int. J. Systematic Innovation, 9(1), 30-43 (2025) 

31 

 

emotions or expressions from the entire face and eye 

region of interest using the FER2013_cropped dataset 

with seven types of expressions, namely angry, disgust, 

fear, happy, neutral, sad, and surprise. The study 

investigated how well the FER system can recognize 

expressions, even when individuals wear face masks 

and expressions are often confused with others when 

the face is covered. 

In addition, data augmentation techniques in deep 

learning models are often used in the image 

classification process that can handle data scarcity. 

Data augmentation can increase the accuracy value of 

the trained CNN model because it provides additional 

data, enhancing variations in the dataset used (Waheed 

et al., 2020). The type of data augmentation commonly 

used in research is geometry transformation (Kandel 

et al., 2022). Pei et al. (2019) applied data 

augmentation techniques in face recognition using 

CNN to address the issue of insufficient data samples. 

The types of data augmentation used in their research 

are geometric transformation, brightness 

augmentation, image translation, image rotation, 

image zoom, and filter operation. The results showed 

that applying the CNN method with data augmentation 

can achieve an accuracy of 86.3% higher than the 

principal component analysis or the local binary 

pattern histogram method. In addition, according to 

Kandel et al. (2022), applying data augmentation 

techniques for classification on histopathology, 

especially on the Invasive Ductal Carcinoma Dataset. 

They used two types of data augmentation, geometric 

and brightness augmentation, applying eight 

brightness scales using four CNN models, namely 

Resnet50, DenseNet121, InceptionV3, and Xception. 

The results showed that the application of geometric 

augmentation provides better accuracy than the 

application of brightness augmentation. In addition, 

the CNN model provides better results without the 

application of data augmentation techniques. Hence, it 

can be hypothesized that in the research conducted by 

Kandel et al. (2022), the application of brightness 

augmentation significantly reduced model 

performance when extreme values were used. 

Based on the entire description of the work, gaps 

still pave the way for future research, primarily related 

to the type of expression used in Yang et al.’s research, 

which only has three categories: positive, negative, 

and neutral. The system was designed using CNN 

architecture, as shown by the research of Castellano et 

al., which uses VGG16 and MobileNetV2 architecture, 

while Yang et al. used VGG19 and MobileNetV2. The 

choice of architecture in these studies becomes a 

reference for applying transfer learning to the VGG16 

and MobileNet architectures in classifying masked 

facial expressions. In addition, Pei et al. applied data 

augmentation, especially brightness augmentation, 

solely to face recognition datasets. Kandel et al. only 

applied eight brightness scales to histopathology 

datasets, particularly on the Invasive Ductal 

Carcinoma dataset. 

Hence, this research is expected to provide a 

better understanding of masked facial expression 

recognition using deep learning techniques with the 

application of CNN architectures, namely VGG16 and 

MobileNet. In addition, data augmentation methods, 

such as geometric augmentation and brightness 

augmentation, will also be explored to evaluate their 

effect on the classification accuracy of masked facial 

expressions.  
 

2. Related Work 

Facial expression recognition systems mostly try 

to recognize expressions from a person’s entire face. 

However, the pandemic has caused individuals to wear 

masks all the time, thereby causing their faces not to 

be fully visible. Currently, there is various research in 

classifying the types of facial expressions in masks. 

Table 1 shows the results of the related work and each 

proposed model’s approach. 
 

3. Methodology 

This research methodology encompasses several 

key stages conducted systematically to achieve the 

research objectives. These stages include data 

collection, exploratory data analysis (EDA), data 

preparation, building the CNN model, model training, 

and model evaluation. The flow of these stages is 

illustrated in the flowchart shown in Fig. 1. 
 

3.1. Data Collection 

The research data from the Kaggle website and 

sample data for prediction tests were taken directly 

using a smartphone. The datasets used in this study 

include the MaskedDatasetFER, while 17 data 

samples were used for the prediction tests. 

The explanation of the origin of the 

MaskedDatasetFER dataset is listed in the description 

on Kaggle (https://bit.ly/3UP0oRz), published in 

2021. The MaskedDatasetFER dataset originated from 

the FER2013 dataset prepared by Pierre-Luc Carrier 

and Aaron Courville as part of an ongoing research 

project. A categorized dataset of masked individuals’ 

facial expressions was created by artificially placing a 

face mask on the FER2013 dataset, forming a new 

dataset, MaskedDatasetFER. 

MaskedDatasetFER consists of a dataset in the 

form of image files with image dimensions of 48 × 48 

pixels with a red, green, and blue (RGB) image type. 

The total data from the dataset is 20,484 image data, 

consisting of 15,531 training data and 4,953 validation 

data. Both data have seven types of expressions or 

class labels: angry, disgusted, fearful, happy, sad, 
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surprised, and neutral. The sample data from 

MaskedDatasetFER is provided in Fig. 2. 

Meanwhile, the data samples used for the 

prediction tests have 17 image data samples with 

dimensions of 300 × 300 and are RGB image types. 

The sample data for the prediction test is shown in Fig. 

3. 

 

3.2. Exploratory Data Analysis 

Exploratory data analysis (EDA) is a process for 

exploring the dataset to be used. In this research, EDA 

includes two main aspects: data understanding and 

data visualization. 

 

Table 1. Related work 

Author Model Description Advantages Limitations 

Yang et 

al. 

(2021) 

CNN model by applying 

VGG19 and 

MobileNetV2 

architecture types. 

Focus on facial expression 

recognition (FER) of three 

types of expressions on the 

people in masks. 

The model effectively enhances 

facial expression recognition 

accuracy by focusing on 

uncovered areas and surpasses 

other mask-aware recognition 

methods. 

This model only classified 

three emotional categories: 

positive, neutral, and 

negative, so its 

generalization is still 

limited. 

Castella

no et al. 

(2021) 

Implement CNN model 

with VGG16 and 

MobileNetV2 

architecture types and 

apply ADAM optimizer 

type. 

Focus on introducing 

automatic expression of the 

expression face when 

wearing a mask. 

This research has succeeded in 

developing an effective system for 

recognizing facial expressions 

only from the eye area. 

This system has limitations 

in managing negative 

emotions, which often 

confuse expressions of 

sadness with anger or fear. 

Pei et 

al. 

(2019) 

The CNN model is used 

by applying VGG16 

architecture types and the 

cross-validation method. 

Focus on recognition face, 

recognition through 

learning deep learning 

using data augmentation 

based on experiment 

orthogonal. 

The data augmentation method 

successfully increased the 

accuracy of facial recognition to 

98.1% for class attendance. 

The data collection process 

and the required orthogonal 

experiments can be 

challenging to implement. 

Kandel 

et al. 

(2022) 

Using CNN mode by 

applying Resnet50, 

DenseNet121, 

InceptionV3, and 

Xception. 

Focus on brightness as an 

augmentative technique for 

image classification on an 

AGY dataset of invasive 

ductal carcinoma dataset. 

Applying geometric augmentation 

techniques is more effective than 

brightness in improving CNN 

performance. 

Brightness augmentation, 

especially at extreme 

values, can degrade model 

performance and not 

improve classification 

results. 

Grundm

ann et 

al. 

(2021) 

The multilevel regression 

(logistic) method was 

used with the nlminb 

optimizer, and the Glmer 

method was applied. 

Focusing on face masks 

reduces expression 

recognition accuracy and 

perceived proximity. 

This research reveals a significant 

impact of face mask use on the 

accuracy of emotion recognition 

and social judgment and provides 

essential insights for mask-related 

policy making. 

Face masks have been 

shown to reduce the ability 

to classify emotional 

expressions accurately and 

may decrease feelings of 

closeness, particularly in 

older adults. 

Cotter 

et al. 

(2020) 

Implement CNN models 

with MobileNet, 

MobileEx, and ResNet 

architecture types. 

Focus on introducing facial 

expression recognition on 

smartphones. 

The proposed MobiExpressNet 

model has more than 5 times 

smaller size and FLOPs than the 

smallest MobileNet model, with 

67.96% accuracy on the FER2013 

dataset, making it very attractive 

for real-time smartphone 

applications. 

The performance and 

accuracy of the 

ExpressNeT Mobile model 

have not been tested in 

real-world conditions on 

smartphone devices, which 

needs to be considered in 

further development. 

Genc et 

al. 

(2020) 

Using the Wizard of Oz Focus on face mask design 

to reduce occlusion of 

facial expressions. 

Electrochromic technology in 

smart masks enhances 

communication by displaying 

facial expressions. 

The study was limited to a 

small sample and did not 

test the automated 

mechanism for real-world 

use. 

Mergha

ni et al. 

(2020) 

Implement the FME 

algorithm and apply 

SMO, CASMEII, and 

SAMM methods. 

Focus on creating a new 

adaptive mask for region-

based facial micro-

expression recognition by 

defining 14 new rois based 

on the most frequently used 

action units (au). 

Region-based and adaptive mask 

methods for recognizing facial 

micro-expressions show promising 

accuracy, with competitive results 

compared to deep learning 

approaches on the SAMM dataset. 

The accuracy of this 

method is still relatively 

low compared to other 

methods, and this research 

only evaluated two datasets 

without considering the 

potential combination with 

deep learning approaches in 

the future. 
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3.2.1. Data Understanding 

The data understanding process in this research 

involves several crucial steps. Firstly, understanding 

the number of datasets in MaskedDatasetFER. Next, 

identify the types of classes present in the dataset. The 

following step involves evaluating the amount of data 

within each class in the dataset and understanding the 

data shape to ensure that the input dimensions are 

appropriate when building the CNN model. Since this 

research uses image data, verifying the RGB pixel 

values is necessary to ensure that the data used is 

indeed RGB image data. 

 

3.2.2. Data Visualization 

The data visualization process in this study 

involves two steps, including displaying the 

distribution of the MaskedDatasetFER dataset for both 

training and validation data and displaying images 

found in each class within the dataset. 

3.3. Data Preparation 

The data preparation stage is a crucial process 

involving the preprocessing of the dataset before the 

model training phase. In this research, the dataset was 

divided into two parts: training data and validation 

data. The data was split using various ratios, including 

50:50, 60:40, 70:30, 80:20, and 90:10, to evaluate the 

model’s performance based on different training and 

validation data proportions. Additionally, data 

augmentation techniques were applied, including 

brightness adjustment, rescaling, zooming, rotation, 

and other transformations to enhance the variety and 

quality of the training data. The brightness 

Table 1. Cont’d 

Author Model Description Advantages Limitations 

Yang et 

al. 

(2022) 

Cross-attention-based 

and vision transformer 

models with CNN 
architecture types were 

used, including VGG19, 

MobileNet1, ResNet, 
and ViT, and the 

application of RAN, 

ACNN, and OADN 
methods. 

Focus on Facial Expression 

Recognition based on Face 

Parsing and Vision 
Transformer. 

The proposed method combines 

Transformer face parsing and 

vision models with a cross-
attention mechanism to improve 

facial expression recognition 

accuracy with masks, surpassing 
the existing FER method. 

This research has not 

tested the method in real-

world contexts or broader 
scenarios beyond the 

dataset used. 

Agrawa

l et al. 

(2020) 

Using the CNN model 

and the FER2013 

dataset. 

Focus on studying the 

effect of kernel size and 

number of filters on facial 
expression recognition 

accuracy. 

Presenting two new simple and 

effective CNN architectures, 

achieving 65% accuracy on the 
FER-2013 dataset. 

This research is limited to 

the FER-2013 dataset, 

which may not be 
generalizable to other 

datasets or real-world 
applications. 

Ding et 

al. 

(2020) 

The CNN model was 

used with Resnet50, 

VGG16, and AffecNet 
architecture, and the 

OADN approach was 

applied. 

Focus on occlusion-

adaptive deep network for 

robust facial expression 
recognition. 

This method improves the 

accuracy of expression 

recognition by handling occluded 
facial features and dividing the 

feature map into independent 

facial blocks for better robustness 
to occlusion. 

This research requires high 

computational resources 

for model training and 
application. It may be less 

than optimal for very 

subtle or external 
expression variations not 

covered by the dataset. 

Cheng 
et al. 

(2019) 

Using model FSNet. Focus on enhanced face 
segment or deep feature 

learning for face 

recognition. 

FSENet enhances identity 
discrimination by exploiting local 

facial features through semantic 

segmentation and parsing maps 
while integrating global and local 

information. 

The method may struggle 
with significant intra-

personal variations or 

extreme facial condition 
changes not fully covered 

by the parsing maps. 

Li et al. 

(2020) 

Implementing the CNN 

model with VGG16 
architecture and 

applying attention 

mechanisms and LBP 
approaches. 

Focus on CNN-based 

attention mechanisms for 
facial expression 

recognition. 

The proposed network integrates 

LBP features and an attention 
mechanism to enhance 

performance in facial expression 

recognition, demonstrating 
superior results on multiple 

datasets, including a newly 

collected one. 

The method is currently 

limited to 2D images and 
does not address video 

data, 3D face datasets, or 

depth images, which could 
restrict its applicability. 

Farkhod 

et al. 

(2022) 

Using CNN model with 

Haar–Cascade classifier. 

Focus on developing real-

time landmark-based 

emotion recognition CNN 
for masked faces. 

The proposed method achieves a 

high accuracy of 91.2% in image-

based emotion recognition for 
masked faces by utilizing 

landmark-based features and a 

CNN model, showing effective 
performance compared to existing 

models. 

Real-time emotion 

detection accuracy is lower 

due to biases and noise, 
such as image blurriness 

and poor lighting, and the 

method requires further 
development to improve 

performance under such 

conditions. 
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augmentation specifically employed eight parameters, 

 
Fig. 1. Research flowchart. 

 

 
Fig. 2. Sample MaskedDatasetFER. 

 

 
Fig. 3. Sample prediction test. 

 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 

Sample 13 Sample 14 Sample 15 Sample 16 Sample17 
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augmentation specifically employed eight parameters, 

as used in the research by Kandel et al. (2022), with 

brightness ranges of 0.00–0.25, 0.25–0.50, 0.50–0.75, 

0.75–1.00, 1.00–1.25, 1.25–1.50, 1.50–1.75, and 

1.75–2.00. The results of these data augmentation 

techniques are illustrated in Fig. 4. 

 

3.4. Building the CNN Model 

Developing the CNN model in this research 

involves applying transfer learning to pre-trained 

architectures, namely VGG16 and MobileNet. The 

CNN architectures used in this study are VGG16-FL 

and MobileNet-FL, which apply the freezing layer 

technique to specific layers and modify the top layers. 

The detailed architectures of VGG16-FL and 

MobileNet-FL are illustrated in Fig. 5 and Fig. 6. 

 

3.5. Model Training 

At this stage, the CNN model that has been 

constructed is trained to achieve optimal performance. 

The training process involves the application of 

 

Fig. 4. Data augmentation. 

 

 
Fig. 5. VGG16-FL architecture. 
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various hyperparameters, including the ADAM 

optimizer. In this process, fine-tuning is performed by 

setting the learning rate at three levels: 0.001, 0.0001, 

and 0.00001. The number of epochs is also set to 100 

to ensure the model can learn effectively from the 

available data.  
The model training process applies the cross-

validation method with k-fold values ranging from 2 

to 10. This approach evaluates and improves the 

model’s ability to generalize to the new data and 

address the imbalanced data issue. By 

comprehensively assessing the model’s performance 

across various subsets of data, the model is expected 

to deliver consistent and accurate results, mainly when 

tested with uneven class distribution data. 

 

 

 
 

Fig. 6. MobileNet-FL architecture. 

 

 

3.6. Model Evaluation 

The system evaluation stage, which involves 

assessing the accuracy achieved in the research, 

calculates precision and recall values using the 

confusion matrix and F1-score methods. The 

calculations for accuracy, precision, recall, and F1-

score based on the confusion matrix are presented in 

equations (1), (2), (3), and (4), according to Castellano 

et al. (2021). 

 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
     (1) 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
      (2) 

     𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
        (3) 

     𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 )

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
       (4) 

T represents true, P represents positive, N 

represents negative, and F represents false. 

Additionally, the evaluation process includes 

conducting predictive tests with actual data samples. 

This step is crucial to assess whether the developed 

model can accurately predict masked facial 

expressions using actual data, thereby validating the 

model’s effectiveness in practical applications. 

 

4. Results and Discussion 

4.1. Analysis Model CNN 

The VGG16-FL and MobileNet-FL architectures 

have the base pre-trained VGG16 and MobileNet 

models modified in the top layer, adding a flattened, 

dense, and dropout layer. Applying the dropout layer 

in both architectures is intended to reduce overfitting 

conditions, with dropouts of 0.2 and 0.5 applied. 

Overfitting and underfitting conditions are two of 

the problems that cause inaccurate and suboptimal 

prediction results. Overfitting conditions can occur 

when a (NN that is overly dependent on the training 

set learns incorrect mappings that work well in the 

training set but perform poorly in the validation or 

testing set (Zhang et al., 2019). In addition, models 

trained with an unbalanced data set may become 

overfitted to training samples from underrepresented, 

resulting in poor generalization during test time (Li et 

al., 2021). There are several alternatives to handling 

models that experience overfitting conditions used in 

this study, including adding the application of data 

augmentation, which has been empirically proven to 

reduce overfitting with very high dimensional data by 

increasing the amount and variety of training data 

(Rice et al., 2020). Another way is the application of 

dropout by randomly discarding information targeting 

each hidden node of the NN during the training phase 

(Choe et al., 2019). A possible factor causing 

underfitting is that the NN architecture is too simple 

and has too few hidden layers or trainable parameters, 

making it not powerful enough to capture complex 

data characteristics (Zhang et al., 2019).  

Based on previous experiments, the application 

of various data division ratios aims to obtain the best 

accuracy values. The results show that the two 

architectures used produce quite minimal accuracy 



DOI: 10.6977/IJoSI.202502_9(1).0003 

D.M. Ramadhan, H. Mubarok, etc./Int. J. Systematic Innovation, 9(1), 30-43 (2025) 

37 

 

values and experience overfitting conditions. Data 

augmentation and dropout are applied to overcome the 

overfitting conditions, but in experiments without 

cross-validation, it is not effective enough to address 

overfitting. Therefore, the cross-validation method is 

applied to reduce overfitting in this research. In 

addition, overfitting can occur due to several factors, 

such as the dataset used having an imbalance of data 

between class labels for both training data and 

validation data. Cross-validation is one of the most 

widely used data resampling methods to estimate the 

true prediction error of a model and one of the methods 

used to prevent overfitting conditions (Berrar et al., 

2018).  

The application of the cross-validation method on 

both VGG16-FL and MobileNet-FL architectures in 

this study proved to be quite effective in handling 

overfitting. This is shown by the accuracy value 

obtained, which increased significantly from the 

experiment without cross-validation. The application 

of the number of k-folds in the cross-validation 

method also affects the accuracy value obtained, 

namely in the VGG16-FL cross-validation (VGG16-

FLCV) architecture, resulting in the highest accuracy 

value at a value of 7-fold cross-validation. Meanwhile, 

in the MobileNet-FL cross-validation (MobileNet-

FLCV) architecture, the highest accuracy value is at 

the 8-fold cross-validation value. Subsequently, 

brightness augmentation is applied to measure the 

effect on the accuracy value obtained. The graphs 

showing the accuracy and loss values on the VGG16 

and MobileNet architectures and the application of 

cross-validation and brightness augmentation methods 

are illustrated in Fig. 7 to Fig. 14. 

0
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Fig. 7. Training accuracy with VGG16-FL. 

Fig. 7 shows that the VGG16 architecture 

applying the cross-validation method has a higher 

training accuracy (VGG16-FLCV) than the VGG16 

architecture without the cross-validation method. In 

addition, the graph shows that the application of 

brightness augmentation can increase the training 

accuracy value obtained precisely in the brightness 

range (1.00, 1.25), which obtained a training accuracy 

value of 81.73%. Meanwhile, the application of the 

brightness range (0.00, 0.25) has the lowest accuracy 

value compared to other experiments, with a training 

accuracy value of 36.78%. Hence, it can be concluded 

that applying the brightness range (0.00, 0.25) can 

significantly reduce the training accuracy value. The 

comparison graph of the loss value between models 

that do not apply the cross-validation method with 

models that apply the cross-validation method and the 

comparison of each application of brightness 

augmentation on the VGG16-FLCV architecture is 

illustrated in Fig. 8. 

 
Fig. 8. Training loss with VGG16-FL. 

Meanwhile, the training loss value graph in Fig. 

8 shows that the smallest training loss value is found 

in the VGG16 architecture that applies the cross-

validation method and brightness augmentation with 

the brightness range (1.00, 1.25). The highest training 

loss value listed in the graph is on the architecture 

applying brightness range (0.00, 0.25). In addition, the 

validation accuracy and loss graphs with the VGG16 

architecture can also be seen in Fig. 9 and Fig. 10. 

 
Fig. 9. Validation accuracy with VGG16-FL. 

Fig. 9 shows a comparison graph of validation 

accuracy illustrating differences in the previous 

training accuracy graph. This validation accuracy 

shows relatively stable results, with only minor 
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fluctuations in the form of increases or decreases in 

validation accuracy values. However, the highest 

validation accuracy value is observed in experiments 

applying the cross-validation method (VGG16-FLCV) 

and in experiments applying brightness augmentation 

with brightness range (1.00, 1.25). The validation 

accuracy value in the VGG16-FLCV experiment is 

70.61% and 70.71% in the brightness range (1.00, 1.25) 

experiment. In addition, the validation accuracy value 

that has the lowest value is in the experiment applying 

brightness augmentation (0.00, 0.25) with the resulting 

validation accuracy value of 28.26%. 

 
Fig. 10. Validation loss with VGG16-FL. 

The graph in Fig. 10 shows that the experiment 

that applies the cross-validation method and the 

experiment that applies the brightness range (1.00, 

1.25) have relatively low validation loss values 

compared to the validation loss value in other 

experiments. The experiment applying the brightness 

range (0.00, 0.25) has the highest validation loss value 

compared to other experiments. 

 
Fig. 11. Training accuracy with MobileNet-FL. 

Based on the graph in Fig. 11, the MobileNet 

architecture applying the cross-validation method 

(MobileNet-FLCV) has a higher training accuracy 

compared to the MobileNet architecture without the 

cross-validation method. In addition, the graph shows 

that the application of brightness augmentation with 

the MobileNet architecture applying the brightness 

range (0.00, 0.25) can significantly reduce the 

accuracy value. In addition, the training accuracy 

value with the highest value is the experiment 

applying the cross-validation method without 

employing brightness augmentation, obtaining a 

training accuracy value of 67.47%. The lowest training 

accuracy value was found in the MobileNet 

architecture experiment without cross-validation, 

resulting in a training accuracy value of 44.46%. 

 
Fig. 12. Training loss with MobileNet-FL. 

Meanwhile, the training loss value graph in Fig. 

12 shows that the lowest training loss value is the 

MobileNet architecture applying the cross-validation 

method without brightness augmentation, and the 

highest training loss value is the experiment without 

applying the cross-validation method. 

 
Fig. 13. Validation accuracy with MobileNet-FL. 

Fig. 13 shows a comparison graph of validation 

accuracy showing differences in the previous training 

accuracy graph. This validation accuracy graph shows 

relatively constant results, indicating similarities in the 

experiments using the VGG16 architecture. Hence, it 

can be said that the changes that occur in the graph, 

both in the form of an increase or decrease in the 

validation accuracy value that occurs, are not too 
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significant. However, the highest validation accuracy 

value is the experiment that applies the cross-

validation method or MobileNet-FLCV with a 

validation accuracy value of 56.37%. Meanwhile, the 

lowest validation accuracy value is found in the 

experiment applying the brightness range (1.75, 2.00) 

with a validation accuracy value of 31.80%. 

 
Fig. 14. Validation Loss with MobileNet-FL. 

The graph in Fig. 14 shows that the experiment 

that applies the cross-validation method has a 

relatively small validation loss value compared to the 

validation loss value in other experiments, and the 

highest validation loss value is in the experiment with 

the brightness range (1.75, 2.00). 

Based on the graphical results in Fig. 7 to Fig. 14, 

it can be said that the application of brightness 

augmentation can reduce and increase the accuracy 

values obtained. The application of brightness 

augmentation in the VGG16-FLCV architecture that 

can be applied in the model training process on the 

classification of masked facial expressions is the 

brightness range (0.25, 0.50), (0.50, 0.75), (0.75, 1.00), 

and (1.00, 0.25) ranges do not experience a very 

significant decrease in accuracy value. The application 

of brightness augmentation with a brightness range 

(1.00, 0.25) can increase the accuracy value from the 

accuracy value results that do not apply brightness 

augmentation in the VGG16-FLCV architecture. The 

accuracy values obtained from the application of 

brightness range (1.00, 0.25) with VGG16-FLCV 

architecture are 81.73% (training accuracy) and 

70.71% (validation accuracy). Meanwhile, the model 

evaluation process is also carried out on the VGG16-

FLCV architecture that applies brightness 

augmentation. Application of brightness range (0.00, 

0.25) produces lower values compared to other 

experiments, namely with a precision value of 36.35%, 

recall of 34.03%, and F1-score of 34.81%. In addition, 

the application of brightness augmentation produces 

the highest value of prediction accuracy, precision, 

recall, and F1-score, namely in the use of brightness 

range (0.75, 1.00) in 7-fold cross-validation with a 

value of precision 74.51%, recall 72.38%, and F1-

score 73.22%, and the use of brightness range (1.00, 

1.25) in 7-fold cross-validation with precision 76.23%, 

recall 74.16%, and F1-score 74.97%. 

Meanwhile, the application of brightness 

augmentation in the MobileNet-FLCV architecture 

mostly decreases the accuracy value of the experiment 

that does not apply brightness augmentation. The 

application of brightness augmentation that has a fairly 

high accuracy value among other brightness 

augmentation applications is the brightness range 

(1.00, 1.25), which obtained a training accuracy value 

of 62.66% and a validation accuracy value of 51.21%. 

So, it can be said that the application of brightness 

augmentation in the MobileNet-FLCV architecture 

that can be applied in the model training process on the 

classification of masked facial expressions is in the 

brightness range (0.25, 0.50), brightness range (0.50, 

0.75), brightness range (0.75, 1.00), brightness range 

(1.00, 0.25) and brightness range (1.25, 1.50). 

Meanwhile, the model evaluation results with the 

application of brightness augmentation and cross-

validation show that the Mobilenet architecture can 

have smaller precision, recall, and F1-score values 

compared to the application of the VGG16 

architecture. The precision, recall, and f1-score values 

are quite high compared to the other experiments in 

the application of MobileNet-FLCV architecture 

found in the experiment without applying brightness 

augmentation with 8-fold cross-validation, which is 

63.58% precision, 60.93% recall, and 61.26% f1-score. 

This study compares several models based on 

five performance metrics: precision, recall, F1-score, 

accuracy, and validation accuracy. The models include 

various VGG16 and MobileNet variants, each 

evaluated under different configurations, as shown in 

Table 2. 

The results indicate that the application of cross-

validation significantly improves the performance of 

both VGG16 and MobileNet models. However, the 

effects of brightness augmentation show variability, 

suggesting that careful adjustment of augmentation 

parameters is essential to optimize model performance. 

Based on research conducted by Kandel et al. 

(2022), the application of geometric augmentation 

provides a better accuracy value compared to the 

application of brightness augmentation. In addition, 

the CNN model, without applying data augmentation 

techniques, gives better results than the application of 

brightness augmentation. However, in this study, the 

application of brightness augmentation can increase 

the resulting accuracy value, namely in the application 

of VGG16-FLCV architecture with the brightness 

range (1.00, 1.25) in the process of masked facial 

expression classification. This research proposes 

several brightness range parameters that can be used 

for the masked facial expression classification process 

for both darkness and brightness categories in each 

architecture used, namely VGG16-FLCV and 

MobileNet-FLCV. In addition, there are similarities 
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between masked facial expression classification 

research contained in Yang et al.’s (2021) research and 

Castellano et al.’s (2021) research in terms of using 

CNN architecture, which is a reference in this research. 

However, there are differences in this study, namely, 

in this study, there is an additional method to optimize 

the accuracy value obtained by adding the cross-

validation method to the VGG16 and MobileNet 

architectures. 

 

4.2. Analysis Prediction Test 

The prediction test process is carried out using 

prediction sample data to test whether the model can 

predict masked facial expressions with real data. The 

prediction test process is carried out using a model 

with the application of the VGG16-FLCV architecture 

in 7-fold cross-validation and MobileNet-FLCV 8-

fold cross-validation and with the application of 

brightness augmentation. The results of the prediction 

test process can be seen in Fig. 15 to Fig. 18.  

Fig. 15 shows the results of the types of 

expressions produced in the 17 samples used in the 

prediction test process on the VGG16-FLCV 

architecture based on the techniques used. In addition, 

based on this figure, it shows that the model that can 

predict the most types of expressions is the model that 

applies the brightness range (0.50, 0.75), which in 17 

samples predicts angry, neutral sad, happy, fear, and 

surprise expressions. Meanwhile, the model that can 

predict the least types of expressions is the model that 

applies the brightness range (1.50, 1.75). 

The prediction test was carried out on 17 data 

samples; each sample has a difference in predicting the 

type of facial expression in the application of the 

VGG16-FLCV architecture. The graph that shows the 

results of the expression type prediction test for each 

sample can be seen in Fig. 16. 

 
Fig. 15. Expression type prediction test results VGG16-FLCV. 
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Table 2. Comparison of value precision, recall, f1-score, accuracy, and validation accuracy. 

 

Techniques used Precision Recall F1-Score Accuracy Validation accuracy 

VGG16-FL 0.1766 0.1689 0.1713 0.5413 0.4454 

VGG16-FLCV 0.7716 0.7535 0.7617 0.8165 0.7061 

VGG16-FLCV-BR000025 0.3635 0.3403 0.3481 0.3678 0.2826 

VGG16-FLCV-BR025050 0.5272 0.4835 0.4950 0.6303 0.4491 

VGG16-FLCV-BR050075 0.6777 0.6527 0.6604 0.7592 0.612 

VGG16-FLCV-BR075100 0.7451 0.7238 0.7322 0.7884 0.682 

VGG16-FLCV-BR100125 0.7623 0.7416 0.7497 0.8173 0.7071 

VGG16-FLCV-BR125150 0.5496 0.5280 0.5344 0.7270 0.4573 

VGG16-FLCV-BR150175 0.5395 0.4289 0.4571 0.7040 0.3401 

VGG16-FLCV-BR175200 0.4211 0.3468 0.3608 0.6372 0.3028 

MobileNet-FL 0.2169 0.1723 0.1843 0,4446 0.4191 

MobileNet -FLCV 0.6586 0.6351 0.6440 0.6875 0.5512 

MobileNet-FLCV-

BR000025 

0.4062 0.3941 0.3959 0.5214 0.3602 

MobileNet-FLCV-

BR025050 

0.5107 0.4968 0.4966 0.6053 0.4437 

MobileNet-FLCV-

BR050075 

0.6117 0.5843 0.5936 0.6699 0.5094 

MobileNet-FLCV-

BR075100 

0.5992 0.5500 0.5655 0.6102 0.4941 

MobileNet-FLCV-

BR100125 

0.5961 0.5746 0.5798 0.6443 0.5230 

MobileNet-FLCV-

BR125150 

0.5824 0.4636 0.4887 0.6298 0.4199 

MobileNet-FLCV-

BR150175 

0.4908 0.4128 0.4253 0.6432 0.3734 

MobileNet-FLCV-

BR175200 

0.5021 0.3675 0.3926 0.6089 0.3102 

 



DOI: 10.6977/IJoSI.202502_9(1).0003 

D.M. Ramadhan, H. Mubarok, etc./Int. J. Systematic Innovation, 9(1), 30-43 (2025) 

41 

 

 
Fig. 16. Expression type of each data sample VGG16-FLCV. 

Fig. 16 shows the number of facial expression 

prediction results for each data sample used in the 

prediction test with the VGG16-FLCV architecture. 

Data samples that have the highest number of 

expression predictions are the fourth (S4) and seventh 

(S7) data samples. The fourth data sample (S4) is 

predicted to have neutral, sad, happy, and fear 

expression types. Meanwhile, the data sample that has 

the least number of predictions, with one type of 

expression, is the 13th data sample (S13), which is 

predicted to have a sad expression type. 

 
Fig. 17. Expression Type Prediction Test Results 

MobileNetFLCV. 

Fig. 17 shows the results of expression types 

generated in 17 samples used in the prediction test 

process with the MobileNet-FLCV architecture based 

on the techniques used. In addition, based on the figure, 

it shows that the model that can predict the most types 

of expressions is the model that applies the brightness 

range (0.25, 0.50), which in 17 samples predicted 

angry, neutral sad, happy, scared, and surprised 

expressions. The graph that shows the prediction test 

results for each sample can be seen in Fig. 18.  

Fig. 18 shows the number of facial expression 

prediction results for each data sample used in the 

prediction test with MobileNet-FLCV architecture. 

Data samples that have four types of expression 

predictions are in the sixth (S6), seventh (S7), 15th 

(S15), and 17th (S17) data samples. In addition, data 

samples that predicted only one type of expression 

were in the third data sample (S3), the eighth data 

sample (S8), the 12th data sample (S12), and the 13th 

data sample (S13). 

 

 
Fig. 18. Expression type of each data sample MobileNet-

FLCV. 

 

5. Conclusions 

This research has successfully applied deep 

learning techniques using CNN architectures, 

specifically VGG16 and MobileNet, for masked facial 

expression classification. This research makes an 

important contribution to overcoming the challenges 

of facial expression recognition when wearing masks 

makes it difficult in social interactions. The results 

show that the use of VGG16 architecture with cross-

validation method (VGG16-FLCV) provides better 

performance than MobileNet-FLCV architecture in 

recognizing and classifying masked facial expressions. 

This shows that in masked facial expression 

classification applications, VGG16 is superior to 

MobileNet. The application of data augmentation 

methods, such as geometric augmentation and 

brightness augmentation, has helped to improve the 

performance of CNN models. However, it is important 

to choose an appropriate brightness range value to 

obtain optimal results. The experimental results show 

that on the VGG16-FLCV architecture, the brightness 

range (1.00, 1.25) provides the best accuracy with a 

training accuracy of 81.73% and 70.71% validation 

accuracy. 

The application of brightness augmentation on 

the MobileNet-FLCV architecture does not provide 

comparable performance to VGG16-FLCV. From the 

results of this study, it is found that the optimal 

application of brightness range on VGG16-FLCV 

architecture is in the darkness category with the 

brightness ranges (0.25, 0.50), (0.50, 0.75) and (0.75, 
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1.00) and in the brightness category with brightness 

range (1.00, 1.25). In addition, this study found that 

the MobileNet-FLCV architecture with brightness 

ranges (0.25, 0.50), (0.50, 0.75), (0.75, 1.00), (1.00, 

0.25), and (1.25, 1.50) can be used as an alternative 

brightness range without experiencing a significant 

decrease in accuracy. Therefore, the results of this 

study provide a reference for the selection of the right 

brightness range in the application of data 

augmentation in CNN models, especially in the 

context of masked facial expression classification. 

This information is potentially useful for the 

development of more effective masked facial 

expression recognition technology and to support 

social interactions in pandemics or environments with 

extensive use of masks. 

This research possesses several weaknesses and 

shortcomings. Therefore, the following suggestions 

can be used as a reference for further research and 

development, including applying other types of pre-

trained model architectures in implementing transfer 

learning principles for the classification or prediction 

of masked facial expression types. Age parameters can 

be added to the process of predicting the type of 

masked facial expression to predict the type of masked 

facial expression and age of masked individuals. The 

development of the CNN model in predicting masked 

facial expressions is needed so that the process of 

detecting masked facial expressions can be done in 

real-time or be used for developing applications to 

detect masked facial expressions. 
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