
DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

67

Efficient task scheduling in the cloud with queuing and multi-tactic

harris hawks optimization

Sheetal Antony1*, Sujatha S R2

1Ajosha Bio Teknik Pvt. Ltd

Computer Science and Engineering, Sri Siddhartha Institute of Technology, SSAHE

SSIT Maralur, Tumakuru, 572105.

e-mail: sheetal123876@gmail.com

(Received 24 February 2024; Final version received 18 July 2024; Accepted 31 July 2024)

Abstract

Cloud computing faces challenges in task scheduling, which is crucial for cost-efficient execution and resource utili-

zation. Current methods face computational complexity, especially in large-scale data centres. This paper proposes a

novel approach that considers job dependencies and task execution times to reduce make-span, minimize energy con-

sumption, and balance resource loads. VMs are allocated based on workflow task requirements, using thresholds for

task levels and durations to manage execution priorities. Tasks with higher dependencies and longer execution times

are prioritized, ensuring efficient resource utilization and energy savings. The method employs queues for different

task intensities, streamlining VM allocation by organizing tasks with additional metadata like intensities, arrival times,

and deadlines. Historical scheduling logs (HSLs) are used to generate appropriate VMs, with new VMs created if no

matching records exist in the HSLs. The proposed solution optimizes scheduling using an enhanced Multi-Tactic

Harris Hawks Optimization (MTHHO) algorithm, which addresses the limitations of traditional HHO by incorporating

Sobol sequences, elite opposition-based learning, and improved energy updating techniques to enhance population

diversity, adaptability, and convergence accuracy while avoiding local optima using the Gaussian walk learning. The

result shows that the proposed method of QoS performances attained less Makespan, energy consumption of 0.20,

throughput of 2.4, and execution time of 16.75 with effectively allocated resources of 98% when compared to the

previous methods in cloud computing. Therefore, the proposed heuristic-based MTHHO method balanced the load

and allocated the resources effectively to improve QoS performances.

Keywords: Cloud Computing; Thresholds; Energy Consumption; Queuing; Task Scheduling; Multi-Tactic HHO; non-

linear weight; Gaussian walk learning ; Load Balancing; Makespan;

1. Introduction

Cloud computing systems were created based on

the enormous growth in internet data processing.

When it comes to giving technology facilities online,

cloud computing is crucial. Without direct active con-

trol, it gives users access to computer system resources

like data storage and processing power. Three different

services about infrastructure, platforms, and software

can be offered by a cloud. Infrastructure as a Service

(IaaS), which offers infrastructure services including

storage systems and computing resources, is the first

service. Platform as a service (PaaS), the second offer-

ing, allows customers to generate presentations based

on the platform that is made available. The third ser-

vice, known as software as a service (SaaS), offers

customers the option of using software straight from

the cloud without having to install anything locally

[Devaraj etc., 2020, Alam 2021]. Cloud computing al-

lows for the flexible and elastic provision of varied

computing resources in response to user demands; in

recent years, such large-scale applications have used

cloud computing at an increasing rate [Cui etc., 2021].

A cloud data centre’s infrastructure typically com-

prises thousands of big computing hosts with fast com-

puting power [Katal etc., 2023].

Virtual machines (VMs) are a type of computing

resource that cloud providers utilize to deliver compu-

ting resources to users. To increase the general effec-

tiveness of cloud computing, effective task scheduling

is needed when several users make task requests for

services from the cloud. Efficient task scheduling al-

lows the optimal resource allocation between the re-

quested tasks over a limited amount of period enabling

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

68

the achievement of the desired degree of quality of ser-

vice (QoS) [Adhikari etc., 2019, Gawalil etc., 2018].

The primary categories of scheduling mechanisms

used in cloud computing are workflow, static, cloud

service, and dynamic scheduling [Alsaidy etc., 2022].

The difficulty of the process allows for the classifica-

tion of scheduling methods as heuristic, meta-heuristic,

and hybrid task scheduling techniques. Static schedul-

ing employs heuristic approaches such as minimum

execution time (MET), minimum completion time

(MCT), shortest job to fastest processor (SJFP), long-

est job to fastest processor (LJFP), Min-Min, and

Max-Min [Abd etc., 2019, Mishra etc., 2020]. In a

cloud environment, it can be challenging to schedule

tasks and allocate resources in the best possible order

and with the least amount of delay to increase system

presentation. The complexities of the cloud, real-time

task mapping to virtual machines, and virtual machine

mapping to the host machine make task scheduling in

cloud computing an NP-Hard problem [Yadav etc.,

2023, Golchi etc., 2019].

Meta-heuristic algorithms have recently captured

the interest of researchers due to their capacity to solve

large-scale issues efficiently. For NP-Hard problems,

these algorithms can efficiently search a wide area of

the solution space for a solution that is close to optimal

[Abdullahi etc., 2023]. Meta-heuristic algorithms like

the genetic algorithm (GA) [Keshanchi et at., 2017],

ant colony optimization (ACO) [Mahato etc., 2017],

particle swarm optimization (PSO) [Mansouri etc.,

2019, Kumar etc., 2018], discrete symbiotic organism

search (DSOS) [Abdullahi etc., 2016], and gravita-

tional search algorithm (GSA) [Chaudhary etc., 2018]

have recently been used to solve task scheduling issues

[Agarwal etc., 2021, Wei 2020]. However, metaheu-

ristic algorithms possess two major shortcomings: The

first is that they are computationally intensive and can

get stuck in local optimum states, particularly in large

solution spaces. According to Konjaang and Xu Rama-

moorthy et al [Konjaang etc., 2021, Ramamoorthy etc.,

2021], an inequity among local and global search strat-

egies may origin convergence to occur too early.

Hybrid meta-heuristic algorithms were employed

by the researchers to achieve improved performance.

Examples of this hybridization include the hybridized

whale optimization method [Strumberger etc., 2019],

firefly and PSO [1, 11], Q-learning and PSO [Jena etc.,

2022], as well as firefly and simulated annealing [Fan-

ian etc., 2018]. The contribution of the work is out-

lined as:

• Energy-efficient VMs are crucial for cost-

effective, elastic computing in cloud data centres, but

their computational complexity can limit their usabil-

ity in dynamic environments and hinder real-time re-

sponsiveness and scalability.

• A proposed approach focuses on job de-

pendencies and task execution times to shorten make-

span, consume less energy, and balance the load on

available resources.

• Tasks are assigned VMs based on work-

flow tasks, with tasks with longer execution times han-

dled first. Queues are maintained based on job intensi-

ties, and tasks are stored in queues using additional in-

formation.

• The enhanced Multi-Tactic Harris Hawks

Optimization (MTHHO) algorithm is used to optimize

scheduling issues. The algorithm uses Sobol se-

quences, elite opposition-based learning, and the

Gaussian walk learning technique to improve the pop-

ulation's variety, adaptability, and energy updating.

The rest of the manuscript is organized as given.

An introduction is given in Section 1, related works

are presented in Section 2, and effective task schedul-

ing in cloud computing using queuing and multi-tac-

tic Harris Hawks Optimisation modelling is covered

in Section 3. Sections 4 as well as 5 provide the

model results, and the conclusion correspondingly.

2. Related Works

Several studies are involved on the topic of cloud

computing, including scheduling, load balancing, and

resource provisioning. Numerous problems with cloud

computing have captured the attention and concern of

researchers. Resource management, load balancing,

cloud migration, privacy and security, energy con-

sumption, availability and scalability, interoperability,

and compatibility are a few of these significant con-

cerns. These challenges are strongly influenced by in-

vestigating effective task scheduling. The fundamental

to task scheduling in cloud computing is to identify the

most optimal mapping connection among tasks and

virtual machines depending on the objectives of users

and cloud systems. One of the main ways to deal with

this issue is to find a more effective algorithm to sup-

port job scheduling, such as a single-objective optimi-

zation algorithm or a multi-objective optimization al-

gorithm. The following section discusses some of the

utmost recent task-scheduling approaches.

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

69

Kaur, etc., outlined the major research require-

ments for load balancing optimization in the prior

works that must be filled to address the load balancing

problem in cloud environments. To maximize the use

of VMs with uniform load distribution, a framework

for resource provisioning and a combination method

for load balancing has been created in the current work.

The suggested system is based on the fusion of heuris-

tic techniques with meta-heuristic algorithms to

achieve the greatest efficiency in making span and cost.

For the HDD-PLB system, two hybrid methods have

been proposed: the Hybrid Heterogeneous Earliest

Finish Time (HEFT) Heuristic with ACO (HHA) and

the Hybrid Predict Earliest Finish Time (PEFT) Heu-

ristic with ACO meta-heuristic (HPA). The two load-

balancing approaches have been analysed and con-

trasted for the suggested HDD-PLB system to deter-

mine which is superior. However, the suggested frame-

work is based on financial restraints, limiting the exe-

cution of workflow tasks that exceed deadlines in

terms of total cost. The normal time and cost findings

of the 100 repetitions were not measured for this re-

search.

Kruekaew, etc., suggested the MOABCQ

method as a standalone task scheduling method for

cloud computing to tackle workload balancing prob-

lems with a Multi-objective task scheduling optimiza-

tion depending on the Artificial Bee Colony Algorithm

(ABC) with a Q-learning algorithm, which is a rein-

forcement learning method that assists the ABC pro-

cess work more rapidly. The proposed solution ad-

dresses the limitations of simultaneous concerns by

maximizing VM throughput, optimizing scheduling

and resourceconsumpti on, and establishing load bal-

ancing among VMs according to make span, cost, and

resource utilization. The efficiency study of the sug-

gested approach was contrasted utilizing CloudSim

with the load balancing and scheduling methods cur-

rently in use: Max-Min, FCFS, HABC_LJF, Q-learn-

ing, MOPSO, and MOCS in three datasets: Random,

Google Cloud Jobs (GoCJ), and Synthetic workload.

According to the findings, MOABCQ-based algo-

rithms beat other algorithms on account of lowering

makespan, cost, degree of imbalance, boosting

throughput, and utilizing resources regularly. However,

it cannot ensure that the MOABCQ_LJF method is

best, and also not all test datasets can be used to opti-

mize the system's performance.

Velliangiri etc. proposed a Hybrid Electro Search

with a Genetic Algorithm (HESGA) to improve work

scheduling performance by accounting for aspects

such as makespan, balance of load, utilisation of re-

sources, and multi-cloud costs. The proposed method

integrates the advantages of genetic and electro-search

algorithms. The Electro search method generates the

finest global optimum results, while the GA generates

the finest local optimal results. The suggested tech-

nique outperforms current scheduling methods as the

Hybrid Particle Swarm Optimization Genetic tech-

nique (HPSOGA), GA, ES, and ACO. However, there

are no guarantees that the algorithm will find the glob-

ally best solution or that it will always lead to optimal

resource use, which is essential for cloud computing to

be cost-effective.

Rajakumari, etc., proposed the Fuzzy Based Ant

Colony Optimization Scheduling approach, however,

is used in cloud computing to address task scheduling

issues like optimal task scheduling presentation results.

First, by suggesting a Dynamic Weighted Round-

Robin method, work scheduling performance in the

cloud is enhanced. The performance of work schedul-

ing is enhanced by the suggested DWRR algorithm by

taking into account resource competence, task priority,

and length. Next, a hybrid particle swarm parallel ant

colony optimization heuristic approach is suggested to

address the task execution delay issue in DWRR-based

task scheduling. Finally, HPSPACO develops a fuzzy

logic system that enhances job scheduling in the cloud

system. For the inertia weight updates of the PSO and

pheromone trails updating of the PACO, a fuzzy tech-

nique is suggested. To optimize work scheduling, the

proposed Fuzzy HPSPACO on cloud computing re-

duces implementation and waiting times boosts sys-

tem throughput and maximizes resource usage. Con-

versely, the CF-ACO algorithm is a complex algo-

rithm with multiple elements, including fuzzy logic

and ant colony optimization, which can result in fun-

damental processing overhead and difficulties in find-

ing optimal solutions in real-time or large-scale cloud

systems.

Saxena, D., etc., proposed a unique secure and

multi-objective virtual machine placement (SM-VMP)

model using a successful VM migration to tackle the

problems of resource waste, excessive usage of power,

higher inter-communication costs, and security

breaches. The suggested approach emphasizes the safe

and quick operation of user applications by minimiz-

ing inter-communication latency and enabling an en-

ergy-efficient allocation of physical resources

across VMs. The VMP is implemented using the sug-

gested Whale Optimisation Genetic Algorithm

(WOGA), which is motivated by non-dominated

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

70

sorting-based genetic algorithms and whale evolution-

ary optimization. The results of the assessment for

static and dynamic VMP as well as contrasting it using

contemporary advanced revealed a considerable drop

in shared servers, intercommunication costs, power

consumption, and processing period up to 28.81%,

25.7%, 35.9%, and 82.21%, correspondingly. Re-

source utilization also improved up to 30.21%. How-

ever, multi-objective optimization issues in cloud data

centres can be computationally complex, time-inten-

sive, and difficult to solve.

3. Proposed Methodology

The allocation of energy-efficient virtual ma-

chines (VMs) is crucial for cost-effective and elastic

computing in cloud data centres. However, the compu-

tational complexity of existing work, particularly in

large-scale data centres and complex optimization ob-

jectives, can limit the framework's usability in dy-

namic, resource-intensive environments and impair its

real-time responsiveness and scalability. Multi-objec-

tive optimization can be computationally intensive and

time-consuming. It is crucial to understand how com-

putational complexity impacts the usability of the sys-

tems. High computational complexity can cause de-

lays in VM allocation, impacting cloud service respon-

siveness and performance. As data centres scale, man-

aging resource complexity becomes more complex, re-

quiring clear management strategies to ensure system

effectiveness at larger scales. Complex algorithms

may require more computational power, potentially

offsetting energy savings achieved through efficient

VM allocation. Implementing sophisticated algo-

rithms can pose challenges, but clear guidelines and

understanding can help ensure smooth deployment

and operation. The suggested approach focuses on job

dependencies and task execution times to shorten

make-span, consume less energy, and balance the load

on available resources. To preserve a balanced load on

the resources, VMs are assigned tasks depending on

the necessities of the workflow tasks. The suggested

method scans the workflow tasks and establishes

thresholds for the tasks' level and duration. When tasks

are being executed, the threshold values are employed

to handle them based on various priorities.

Tasks with higher dependencies generate system

bottlenecks and extended execution durations. To

shorten execution time, tasks with longer execution

times are handled first, requiring high-priority pro-

cessing and allocating VMs with powerful processing

capabilities. The algorithm also prioritizes tasks with

lengthy execution times, setting thresholds for depend-

encies and duration. This shortens execution time and

reduces energy consumption by effectively utilizing

resources. The suggested approach then employs

queues based on the job intensities, maintaining dis-

tinct queues for CPU-intensive tasks and tasks with

higher dependents. It takes less time to discover the

right VMs during the VM allocation process when

tasks of different intensities are placed in distinct

queues. Tasks are stored in queues using additional in-

formation about them, such as their intensities, arrival

times, and deadlines. The following step is to generate

appropriate VMs for the tasks following the classifica-

tion of tasks into various queues. Historical scheduling

Logs HSLs are employed for this objective. The HSLs

are updated appropriately and a novel VM is generated

with the resources required to complete the task if

there is no matching record in the HSLs. The sug-

gested algorithm optimizes the scheduling issue using

the enhanced Multi-Tactic Harris Hawks Optimization

(MTHHO) algorithm. Scheduling with MTHHO be-

gins following the pre-processing step. An enhanced

MTHHO algorithm is suggested to make up for the tra-

ditional HHO process's low convergence accuracy,

slower degree of convergence, and easy tendency to

prey to the illusion of local optima. To improve the

population's variety, Sobol sequences are first utilized

to start the population. The next step to raise the adapt-

ability and the standard of the solution sets, the elite

opposition-based learning technique is used. Addition-

ally, the original algorithm's energy updating tech-

nique has been improved to increase the process's ca-

pability to explore as well as exploit in a nonlinear up-

date way. To prevent the process from being stuck and

settling into a local optimum, the Gaussian walk learn-

ing technique is finally employed. The suggested

framework for task scheduling utilizing the enhanced

MTHHO process is shown in Fig 1.

The proposed approach to task scheduling opti-

mizes resource utilization, reduces make-span, and

saves energy by using energy-efficient virtual ma-

chines (VMs) and optimizing scheduling. It considers

job dependencies and task execution times, maximiz-

ing resource allocation, reducing idle times, and mini-

mizing make-span. The approach prioritizes tasks

based on dependencies and execution times, ensuring

critical tasks are completed promptly. It also balances

resource loads across the data centre, preventing

overutilization or underutilization, and improving the

stability and reliability of the cloud infrastructure. The

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

71

enhanced MTHHO algorithm, using advanced tech-

niques like Sobol sequences and elite opposition-

based learning, enhances scheduling accuracy, leading

to better convergence on optimal solutions and avoid-

ing common pitfalls like local optima. Overall, this ap-

proach significantly improves task scheduling effi-

ciency and reduces energy consumption.

Fig 1. The Proposed Framework for Task Scheduling

3.1 Materials and Approaches

The proposed method is explained further in this

part of the article. The process focuses on load balance,

makespan, and energy consumption. The process is

separated into dual phases: MTHHO-based optimiza-

tion and preprocessing. The process and cloud frame-

work are covered initially, trailed by the information

of every stage.

3.2 Workflow and Cloud Architecture

Workflow programmes are made up of tasks that

have reliance, such as implementation and data reli-

ance. The tasks in the previous examples have a par-

ent-child relationship. When the execution of each

parent's job has finished, the child's task can begin. In

the latter scenario, the tasks exchange data, meaning

that the result produced by one job is used as the input

for another. It is challenging for a scheduler to effi-

ciently schedule resources for workflow programs be-

cause of these dependencies. A directed acyclic graph

(DAG), such as 𝐷 (𝑉, 𝐸), is used to represent work-

flow activities. In this graph, 𝐸 stands for the edges

while 𝑉 stands for the vertices. VMs, or virtualized re-

sources, are the building blocks of cloud computing. A

scheduling process's objective is to assign 𝑅𝑖 to 𝑊𝑗 ,

where 𝑊𝑗 is the workflow applica-

tion (𝑊1,𝑊2,𝑊3, . . . ,𝑊𝑚 and 𝑅𝑖 is the 𝑖 th resource

from a pool of VMs (𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3, . . . , 𝑉𝑀𝑛). The

objective is to reduce energy usage and

implementation period while maintaining a balanced

load on the available resources. Processing, memory,

storage, bandwidth, and other capacities have been

pre-allocated for the resources. Equation (1) illustrates

how the number of processing elements (PEs) and

MIPs of each PE are used to calculate the processing

capacity (𝐶𝑖) of a resource 𝑉𝑀𝑖.

𝐶𝑖 = (𝑃𝐸×𝑀𝐼𝑃𝑆𝑖) (1)

Equation (2) is used to determine the capacity of

𝑛 resources, or virtual machines.

𝐶 = ∑ 𝐶𝑖
𝑛
𝑖=1 (2)

Every VM has a resource utilisation at any given

period, which is called the VM load. Equation (3) is

used to compute the load, where 𝑇𝐿 the total length of

tasks that 𝑉𝑀𝑖 is processing and Ci is 𝑉𝑀𝑖 's capacity.

𝐿𝑣𝑚𝑖 =
𝑇𝐿

𝐶𝑖
 (3)

Equation (4) is utilised to determine each VM's

load 𝐿.

𝐿 = ∑ 𝐿𝑣𝑚𝑖
𝑛
𝑖=1 (4)

Equation (5) illustrates how load balancing is cal-

culated as the load across various cloud environment

nodes.

𝜎 = √
∑ (𝐿𝑣𝑚𝑖−�̅�)

2𝑛
𝑖=1

𝑛
 (5)

where �̅� is the average load across all VMs, n is

the amount of VMs, and 𝐿𝑣𝑚𝑖 is the load of 𝑉𝑀𝑖. The

way resources are used has a big impact on how much

energy cloud computing uses. Equation (6) can be

used to compute the utilisation.

𝑈 = 𝛼
∑ 𝑐𝑖
𝑛
𝑖=1

𝐶
+ 𝛽

∑ 𝑚𝑖
𝑛
𝑖=1

𝑀
 (6)

where 𝑛 is the number of VMs running on host ℎ,

and 𝑐𝑖 , 𝑚𝑖 denotes the computing and memory as-

signed to 𝑉𝑀𝑖. In Eq. (6), 𝐶 and 𝑀 are the total pro-

cessing ability and memory of the host, and 𝛼 and 𝛽

are the weight factors of every resource.

Equation (7) can be used to compute the energy

consumption, with 𝒌 standing for the functioning en-

ergy consumption, or idle mode. 𝑼 is the host

Task 1

Task 2

 Task 3

.

.

.

Task n

Setting Threshold for Task

Level and Duration

Job Based Queuing

Pre-processing

Multi-Tactic Harris

Hawks Optimization

(MTHHO) algorithm

for Task Scheduling

Data Centers

Virtual

Machines

Hosts

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

72

resource utilisation determined by Equation (6), and

𝑬𝒎𝒂𝒙 denotes the energy consumption during the pro-

cessors' peak utilisation.

𝐸𝑐 = 𝐸𝑖𝑑𝑙𝑒 + (𝐸𝑚𝑎𝑥 − 𝐸𝑖𝑑𝑙𝑒) × 𝑈 (7)

Data processing may be required for workflow

tasks. The workflow's total completion time accounts

for both processing time and time spent acquiring the

necessary data. The completion time of task 𝑡𝑖 is cal-

culated using Equation (8).

𝑇𝑖𝑚𝑒(𝑡𝑖) = 𝑇𝑖𝑚𝑒 ((𝑇𝑟𝑎𝑛𝑠𝑡𝑖 , 𝑡𝑗) +

𝑇𝑖𝑚𝑒𝐸(𝑡𝑖 , 𝑉𝑀𝑘)) (8)

The time required to transmit data from task 𝑡𝑖 to

task 𝑡𝑗 is denoted by (𝑇𝑟𝑎𝑛𝑠𝑡𝑖 , 𝑡𝑗) in Equation (8),

while the execution time of 𝑡𝑖 on 𝑉𝑀𝑘 is represented

by 𝑇𝑖𝑚𝑒𝐸(𝑡𝑖 , 𝑉𝑀𝑘). Equations (9) and (10) are used to

determine the two parameters, respectively.

𝑇𝑟𝑎𝑛𝑠(𝑡𝑖, 𝑡𝑗) =
𝑠𝑖𝑧𝑒𝑜𝑓(𝑡𝑖,𝑡𝑗)

𝛽(𝑉𝑀𝑘,𝑉𝑀𝑚)
 (9)

The quantity of data that task 𝑡𝑖 transfers to task

𝑡𝑗 is represented by 𝑠𝑖𝑧𝑒𝑜𝑓(𝑡𝑖 , 𝑡𝑗) in Equation (9), and

the bandwidth consumed by 𝑉𝑀𝑘 and 𝑉𝑀𝑚 is repre-

sented by 𝛽(𝑉𝑀𝑘 , 𝑉𝑀𝑚). The cost of transmission is

disregarded if both virtual machines are placed in the

same data centre.

𝑇𝐸 =
𝑙𝑖

𝐶𝑚𝑗
 (10)

where 𝐶𝑚𝑗
 is the processing capability of𝑉𝑀𝑗 ,

which was determined using Equation (1), and 𝑙𝑖 is the

length of job 𝑖. A workflow's makespan is the entire

period it gains to complete every task. Equation (11),

where 𝑀𝑆 is the makespan and 𝐹𝑇 is the task's com-

pleting time, can be used to compute the makespan.

𝑀𝑆 = 𝐹𝑇𝑖=1
𝑛 [𝑡𝑎𝑠𝑘𝑖𝑡𝑖𝑚𝑒] (11)

Energy-efficient virtual machines (VMs) signifi-

cantly reduce operational costs by reducing power

consumption in data centres, a crucial factor in a com-

petitive market. They also support the elastic nature of

cloud computing, allowing data centres to dynamically

scale resources based on demand. This elasticity en-

sures optimal resource utilization without unnecessary

energy expenditure. Additionally, the proposed

method simplifies the allocation process by consider-

ing job dependencies and task execution times, mak-

ing it more manageable and efficient even in complex

scenarios.

3.3 Harris Hawks Optimization (HHO)

The HHO process is a mathematical explanation

of the Harris hawk's technique for catching prey under

various circumstances. Each iteration's best answer is

regarded as the prey, while individual Harris hawks

form candidate solutions. The process is allocated into

two primary phases: exploration and exploitation. The

amount of the prey's escape energy determines when

to switch between the two phases. Below is a descrip-

tion of the original Harris Hawks optimisation algo-

rithm.

3.3.1 Exploration Phase

The position data of the Harris hawk population

largely determines the global search phase, and its up-

date methodology is as follows:

𝑍(𝑡 + 1) =

{
𝑍𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑍𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑍(𝑡)| 𝑞 ≥ 0.5

(𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)) 𝑞 < 0.5

 (12)

In this case, 𝑟1 − 𝑟4 and 𝑞 are casually created

among (0,1), being transformed every iteration;

𝑍(𝑡 + 1) stands for the position of the hawks in the it-

eration 𝑡 + 1 ; 𝑍𝑝𝑟𝑒𝑦(𝑡) signifies the location of the

prey; 𝑍(𝑡) signifies the position of the hawks in the

present generation 𝑡 ; 𝑈𝐵 and 𝐿𝐵 are the upper and

lower bounds of the population, accordingly;

𝑍𝑟𝑎𝑛𝑑(𝑡) indicates a casually nominated hawk from

the present population; and 𝑍𝑚(𝑡) stands for the mean

of individuals in the current population, which comes

from Eq.(13):

𝑍𝑚(𝑡) =
1

𝑛
∑ 𝑍𝑘(𝑡)
𝑛
𝑘=1 (13)

where 𝑍𝑘(𝑡) represents the location of hawk 𝑘 in

the reiteration 𝑡 as well as 𝑛 represents the number of

hawks.

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

73

3.3.2 Conversion from Exploration to Ex-

ploitation

The following is the energy calculation that reg-

ulates the prey's outflow:

𝐸𝑓 = 2𝐸𝑒𝑠𝑐0(1 − 𝑡 𝑇)⁄ (14)

Where 𝑇 is the maximum amount of repetitions,

𝑡 is the number of repetitions that are currently in pro-

gress, and the rate of 𝐸𝑒𝑠𝑐0 is an arbitrary number be-

tween −1 and 1 that represents the energy's starting

state. The global exploration phase is represented by

the Harris hawks searching for the prey in various

places while the escape energy |𝐸𝑒𝑠𝑐| ≥ 1, and the lo-

cal exploitation phase is represented by the Harris

hawks searching the nearby solutions when |𝐸𝑒𝑠𝑐| <

 1.

3.3.3 Exploitation Phase

Based on the findings of the previous stages' ex-

ploration, the Harris hawk will besiege the intended

prey in this phase while it attempts to get away from

the chase. For this stage of the simulation, four poten-

tial ways are suggested based on the actions of the Har-

ris's hawk and its prey. 𝐸𝑒𝑠𝑐 simulates both the hard

and soft besiege of Harris's hawk. The parameter 𝑟 in-

dicates whether or not the prey successfully escapes.

3.3.4 Soft Besiege

The prey attempts to get away from the hunt

when |𝐸𝑒𝑠𝑐| ≥ 0.5 and 𝑟 ≥ 0.5 , at which point the

Harris hawk uses a soft besiege to slowly deplete the

prey's energy. The following is a model of the behav-

iour:

𝑍(𝑡 + 1) = ∆𝑍(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡)| (15)

 ∆𝑍(𝑡) = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡) (16)

where 𝐼 is added to resemble the movement of

the prey and 𝑟5 is a randomly generated number be-

tween 0 and 1, with a random variation in its value for

each iteration.

3.3.5 Hard Besiege

The Harris hawk uses Equation (17) to update its

current position and launches a hard besiege attack on

prey when it has insufficient energy to get away, spe-

cifically when |𝐸𝑒𝑠𝑐| < 0.5 and 𝑟 > 0.5.

𝑍(𝑡 + 1) = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|∆𝑍(𝑡)| (17)

3.3.6 Soft Besiege Using Increasingly Fast

Dives

The prey has sufficient energy to outflow the hunt

when |𝐸𝑒𝑠𝑐| > 0.5 and 𝑟 < 0.5 . Harris hawks will

modify their positions by Equation (18):

𝑋 = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍(𝑡)| (18)

𝑌 = 𝑋 + 𝑆 × 𝐿𝐹(𝐷) (19)

where 𝐷 is the problem dimension, 𝑆 is a random

vector of size 1 × 𝐷, and 𝐿𝐹 is the levy flight function,

which can be defined as in Eqn (20):

{

 𝐿𝐹(𝑧) = 0.01 ×

𝑢×𝜎

|𝑣|

1
𝛽

𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1
2)
)

1

𝛽 (20)

where 𝛽 is the default constant, set at 1.5, and 𝑢

and 𝑣 are random numbers within the interval (0,1) .

Therefore, Equation (21) can be used to carry out the

last plan for apprising the Hawks' positions over the

soft siege phase:

𝑍(𝑡 + 1) = {
𝑋, 𝑖𝑓𝐹(𝑋) < 𝐹(𝑍(𝑡))

𝑌, 𝑖𝑓𝐹(𝑌) < 𝐹(𝑍(𝑡))
 (21)

where 𝑋 and 𝑌 are gained using Equations (18)

and (19), correspondingly.

3.3.7 Hard Besiege Using Increasingly

Fast Dives

The prey lacks the energy to accomplish an out-

flow when |𝐸𝑒𝑠𝑐| < 0.5 and 𝑟 < 0.5 . In these cases,

the following tactic is intended to be used:

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

74

𝑍(𝑡 + 1) = {
𝑋, 𝑖𝑓𝐹(𝑋) < 𝐹(𝑍(𝑡))

𝑌, 𝑖𝑓𝐹(𝑌) < 𝐹(𝑍(𝑡))
 (22)

𝑋 = 𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝐸𝑒𝑠𝑐|𝐼𝑍𝑝𝑟𝑒𝑦(𝑡) − 𝑍𝑚(𝑡)| (23)

𝑌 = 𝑋 + 𝑆 × 𝐿𝐹(𝐷) (24)

where 𝑍𝑚(𝑡) is gained using Equation (13)

3.3.8 Main Steps of HHO

Algorithm 1 depicts the important phases of the

overall HHO algorithm.

Algorithm 1 Principal phases of the HHO process

Input: Population size 𝑁 and the maximum number of

iterations 𝑇

1: Start the population

2: while 𝑡 < 𝑇 do

3: Compute the suitability of every solution and get the

best individual

4: for 𝑖 = 1:𝑁 do

5: Modify the escape energy 𝐸𝑒𝑠𝑐 by Eq. (14)

6: if |𝐸𝑒𝑠𝑐| ≥ 1 then

7: Modify the position by Eq. (12)

8: else if then |𝐸𝑒𝑠𝑐| < 1

9: if |𝐸𝑒𝑠𝑐 | ≥ 0.5 and 𝑟 ≥ 0.5 then

10: Modify the position by Eq. (15)

11: else if then |𝐸𝑒𝑠𝑐 | < 0.5 and 𝑟 ≥ 0.5

12: Modify the position by Eq. (17)

13: else if then |𝐸𝑒𝑠𝑐 | ≥ 0.5 and 𝑟 < 0.5

14: Modify the position by Eq. (21)

15: else if then|𝐸𝑒𝑠𝑐 | < 0.5 and 𝑟 < 0.5

16: Modify the position by Eq. (22)

17: end if

18: end if

19: end for

20: 𝑡 = 𝑡 + 1

21: end while

22: return 𝑍𝑝𝑟𝑒𝑦

3.4 Enhanced Multi-Tactic Harris Hawks

Optimization (MTHHO)

The HHO process is effective for local develop-

ment since it includes several development modes and

alternates between them, but it also has the drawback

of being vulnerable to the local optimum issue. To ad-

dress this shortcoming, four enhancement techniques

are employed in this article that enhance the initial al-

gorithm. The MTHHO algorithm is a new approach to

task scheduling optimization that overcomes the

limitations of traditional HHO. It uses sobol sequences

to initialize the population, ensuring uniform and com-

prehensive coverage of the search space. This diversity

is crucial for exploring a wide range of potential solu-

tions and avoiding premature convergence. Elite op-

position-based learning improves the algorithm's abil-

ity to escape local optima by considering both current

best solutions and their opposites, maintaining a bal-

ance between exploration and exploitation. Addition-

ally, the algorithm includes refined energy updating

mechanisms that better simulate the energy dynamics

of hawks in nature, enhancing convergence accuracy

and efficiency. This algorithm also employs Gaussian

Walk Learning (GWL) to enhance population diversity

and avoid local optima by initially using larger disrup-

tions that rapidly decrease in later stages, thereby bal-

ancing algorithm creation and searchability.

3.4.1 Populations for Sobol Sequence Ini-

tialization

The speed and precision of the intelligent algo-

rithm's convergence are significantly influenced by the

primitive solution's distribution within the solution

space. Randomization is used in the basic HHO

method to create the initialised population. Neverthe-

less, the individuals produced in this manner are not

uniformly dispersed around the exploration space,

which consequently impacts the algorithm's accuracy

and convergence rate. In contrast to the random se-

quence, the even distribution of points in space is a

characteristic of the probabilistic low-difference Sobol

sequence. The real population produced by the Sobol

sequence can be given as follows:

𝑍𝑖 = 𝐿𝑏 + 𝑆𝑛 × (𝑈𝑏 − 𝐿𝑏) (25)

where 𝑆𝑛 is the random number produced by the

Sobol sequence, where 𝑆𝑛 ∈ [0, 1], and 𝐿𝑏 and 𝑈𝑏 are

the exploration space's lower and upper limits, accord-

ingly.

The original population space distribution is

compared between the random initialization and the

Sobol sequence initialization population spaces in Fig

2, assuming that the population size is 100, the search

space is two-dimensional, and the upper and lower

limits are 1 and 0, correspondingly.

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

75

Fig 2. Comparison of Sobol and random population genera-

tion

The real population produced by the Sobol se-

quence is further evenly distributed, as seen in Fig 2,

which allows the optimization process to conduct a su-

perior global exploration in the exploration space. This

increases the population's diversity and accelerates the

algorithm's rate of convergence.

3.4.2 Elite Opposition-Based Learning

Opposition-based learning (OBL) is a successful

method of intelligent computing developed by

Tizhoosh in 2005. This technique has been used re-

cently to enhance several algorithms and has shown

excellent optimization outcomes. Considering an in-

stance where a feasible response in d-dimensional

search space is 𝑍 = (𝑧1, 𝑧2,· · ·, 𝑧𝑑)(𝑧𝑗 ∈ [𝑎𝑗 , 𝑏𝑗]),

then the definition of its opposition-based solution is

�̅� = (𝑧1̅, 𝑧2̅,· · ·, 𝑧𝑑̅̅ ̅̅) , where 𝑧�̅� = 𝑟(𝑎𝑗 + 𝑏𝑗) − 𝑧𝑗 ,

𝑟 is the uniform distribution coefficient between [0, 1].

The inverse solution developed by the opposi-

tion-based learning technique does not always search

for the global optimal solution simpler than the exist-

ing exploration space. Elite opposition-based learning

(EOBL) is suggested as a solution to this issue. Con-

sidering that the elite individual represents the extreme

of the current population in the search space 𝑍𝑒 =

 (𝑧1
𝑒 , 𝑧2

𝑒 ,· · ·, 𝑧𝑑
𝑒) , then its inverse solution 𝑍𝑒̅̅ ̅ =

 (𝑧1
𝑒̅̅ ̅, 𝑧2

𝑒̅̅ ̅,· · ·, 𝑧𝑑
𝑒̅̅ ̅) can be stated as follows:

𝑧𝑗
𝑒̅̅ ̅ = 𝑘 ∙ (𝑎𝑗 + 𝑏𝑗) − 𝑧𝑗

𝑒 (26)

where 𝑎𝑗 = 𝑚𝑖𝑛(𝑧𝑗
𝑒), 𝑏𝑗 = 𝑚𝑎𝑥(𝑧𝑗

𝑒), 𝑘 is a

random number inside [0, 1] , and 𝑧𝑗
𝑒 ∈ [𝑎𝑗 , 𝑏𝑗]. It

also has a dynamic border with upper and lower limits,

respectively, represented by 𝑏𝑗 and 𝑎𝑗 . It is advanta-

geous for the produced inverse solution to slowly de-

crease the search space and accelerate the algorithm's

convergence by substituting a dynamic boundary for

the fixed boundary. The method used to reset the value

is as follows to prevent the elite inverse solution from

jumping beyond the boundary and losing its viability:

𝑧𝑖
𝑒̅̅ ̅ = 𝑟𝑎𝑛𝑑(𝑎𝑗 , 𝑏𝑗) (27)

3.4.3 Optimisation of Escape Energy Up-

date

The energy factor 𝐸𝑒𝑠𝑐 is used by a Harris hawk

in the basic HHO to control the algorithm's shift from

the global search stage to the local search stage. Nev-

ertheless, as Eq. (14) illustrates, a linear update is used

to lower its energy factor 𝐸𝑒𝑠𝑐 from 2 𝑡𝑜 1, this, in the

latter part of the cycle, results in locking it in a local

optimum. When the process advances to the latter

stage, a novel, upgraded form of the energy factor is

utilized to address the drawback of just local searching:

𝐸𝑒𝑠𝑐 = {
cos (𝜋 × (𝑡 𝑇 + 1 2) + 2), 𝑡 ≤ 𝑇 2⁄⁄⁄

cos (𝜋 × (𝑡 𝑇 − 1 2)1 3⁄), 𝑡 > 𝑇 2⁄⁄⁄
 (28)

𝐸𝑒𝑠𝑐1 = 𝐸𝑒𝑠𝑐 × (2 × 𝑟𝑎𝑛𝑑 − 1) (29)

where 𝑟 is the random number inside [0, 1], 𝑇 is

the maximum number of iterations, and 𝑡 is the num-

ber of iterations that are currently being done.

As shown in Fig 3, the algorithm's global search

capability is controlled by a fast deceleration rate early

in the iteration. The lowering rate reduces down in the

middle of the iteration to equilibrium the capabilities

of local exploitation and global exploration. Later in

the iteration, the local search picks up speed and its

value decreases quickly. Fig 4 shows that 𝐸𝑒𝑠𝑐1 has

changing energy parameters all over the recursive pro-

cedure and has the capability of both global and local

searching, with global exploration taking place pri-

marily in the initial phase and more local exploitation

taking place later while still maintaining the potential

of global exploration.

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

76

Fig 3. Recurrent alteration graph of Eesc.

Fig 4. Recurrent alteration graph of Eesc1.

3.4.4 Gaussian Walk Learning

A traditional stochastic walk technique with good

exploitation potential is Gaussian walk learning

(GWL). Therefore, this research employs this method

to modify population members to improve the popula-

tion's diversity and assist it in escaping the local opti-

mum trap. Equation (30) illustrates the Gaussian walk

learning model:

𝑍(𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠(𝑍(𝑡), 𝜏) (30)

𝜏 = cos(𝜋 2 × (𝑡 𝑇⁄)2) × (𝑍(𝑡) − 𝑍𝑟⁄ (𝑡)) (31)

where the unidentified individual's position

among the generation population 𝑡 is shown by 𝑍(𝑡),

the individual in the generation population 𝑡 is showed

by 𝑍(𝑡) , and the Gaussian distribution with 𝑍(𝑡) as

the expectation and 𝜏 as the standard deviation is rep-

resented by 𝐺𝑎𝑢𝑠𝑠(𝑍(𝑡), 𝜏) . The function

cos (𝜋 2 × (𝑡 𝑇⁄)2) ⁄ modifies the stage dimension of

Gaussian walk learning. Fig 5 illustrates this in image

form. To improve the creation of algorithms and bal-

ance searchability, the disruption used during the be-

ginning stages is larger and rapidly decreases in the

latter phases.

Fig 5. Wandering length of steps modification graph

3.4.5 MTHHO Algorithm

In overview, Algorithm 2 depicts the major stages

of the enhanced MTHHO algorithm.

Algorithm 2 Principal phases of the MTHHO pro-

cess

Input: Population size 𝑁 and the maximum number of

iterations 𝑇

1: Initialise the population by Eq. (25)

2: while 𝑡 < 𝑇 do

3: Determine the fitness of the original population and

the people in its reverse population by generating the

reverse population utilising the elite opposition-based

learning process

4: If the process is not moving forward, then

5: Modify the location by Eq. (30).

6: else

7: for 𝑖 = 1:𝑁 do

8: Modify the escape energy 𝐸𝑒𝑠𝑐 by Eq. (29)

9: if |𝐸𝑒𝑠𝑐| ≥ 1 then

10: Modify the position by Eq. (12)

11: else if then |𝐸𝑒𝑠𝑐| < 1

12: if |𝐸𝑒𝑠𝑐| ≥ 0.5 and 𝑟 ≥ 0.5 then

13: Modify the position by Eq. (15)

14: else if then |𝐸𝑒𝑠𝑐| < 0.5 and 𝑟 ≥ 0.5

15: Modify the position by Eq. (17)

16: else if then |𝐸𝑒𝑠𝑐| ≥ 0.5 and 𝑟 < 0.5

17: Modify the position by Eq. (21)

18: else if then |𝐸𝑒𝑠𝑐| < 0.5 and 𝑟 < 0.5

19: Modify the position by Eq. (22)

20: end if

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

77

21: end if

22: end for

23: end if

24: 𝑡 = 𝑡 + 1

25: end while

26: return 𝑍𝑝𝑟𝑒𝑦

3.5 Proposed Scheduling Algorithm

The suggested approach aims to balance the im-

pact on resources and minimise makespan and energy

consumption by focusing on task dependencies and

execution times. To maintain a balanced load on the

resources, VMs are assigned tasks based on the re-

quirements of the workflow tasks. Task assignment is

a crucial aspect of a system, focusing on reducing bot-

tlenecks and improving overall efficiency. It involves

assigning tasks based on their dependencies and exe-

cution times, with higher-priority tasks given priority.

Tasks are categorized based on thresholds for task lev-

els and durations, ensuring timely handling of urgent

tasks. The dynamic assignment process adjusts based

on workload and resource availability, ensuring effi-

cient use of virtual machines (VMs). The suggested

method scans the workflow tasks and establishes

thresholds for the tasks' depth and length, where depth

and length are related to the tasks' levels and execution

times, respectively. During task execution, the thresh-

old standards are utilized to handle tasks based on var-

ious significances. Longer implementation times and

bottlenecks in the system are caused by tasks with ad-

ditional dependents. Likewise, to shorten the total ex-

ecution time, tasks that take longer to complete must

be prioritised. High-priority jobs are handled by allo-

cating VMs with significant processing power to them.

To prevent needless waiting for jobs at the same level,

the suggested algorithm further looks for tasks with

lengthy implementation periods and gives these tasks

significance processing. Based on the input data,

thresholds are established for the quantity of depend-

ents as well as the duration. By using resources more

effectively, these processes shorten the implementa-

tion period, which also results in lower energy con-

sumption. Algorithm 3 illustrates the stages in the pro-

cess.

Algorithm 3: Prevent bottleneck tasks

Input: workflow 𝑤

Output: Task queues according to length and depth

Allocate thresholds 𝑑𝑡 for the depth of tasks and 𝑙𝑡 for

the length of tasks

for every task 𝑡 in the task set do

 depth = number of levels reliant on 𝑡
 length = execution time of 𝑡
 if 𝑑𝑒𝑝𝑡ℎ >= 𝑑𝑡 then

 transfer 𝑡 to the depth queue

 end

 if 𝑙𝑒𝑛𝑔𝑡ℎ >= 𝑙𝑡 then

 transfer 𝑡 𝑡o length queue

 end

end

Return queues

Subsequently, the suggested algorithm employs

queues based on task intensities; that is, distinct

queues are kept for activities requiring a lot of CPU

power and tasks with several dependencies. It takes

less time to discover the right VMs during the VM al-

location process when workloads with varying inten-

sities are placed in distinct queues. The allocation pro-

cess is streamlined by using queues to organise tasks,

sorting and prioritising them before being assigned to

VMs, reducing computational complexity and improv-

ing overall system efficiency. Tasks are stored in

queues in which task queues are organised based on

intensities, arrival times, and deadlines, with different

queues maintained for tasks of varying intensities.

Each task in the queue is associated with additional

metadata, such as its intensity, arrival time, and dead-

line, which optimises the scheduling process. The last

stage is to build appropriate VMs for the jobs after

grouping them into distinct queues. Historical Sched-

uling Logs (HSLs) were used to inform the queue

management process, providing insights into past task

execution patterns. If no matching records exist, new

VMs are created to handle the tasks, allowing the sys-

tem to adapt to new or unexpected workloads. A novel

VM is built using the resources essential to finish the

task, and the HSLs are modernised if there isn't a

matching record in the HSLs. Algorithms 4-6 illustrate

the steps in the suggested algorithm.

Algorithm 4: Construct the types of VMs

Input: HSLs, task sets (from certain queues),

Output: VMs (Types)

𝑁 = number of tasks in a queue

for (every task 𝑡 in 𝑁) do

 calculate 𝑃(𝑇𝑡) (Eq. 32)

 𝐻 = 𝑏𝑒𝑠𝑡 𝑛 𝑃(𝑇𝑡)
end

for (every 𝑙 in 𝐻) do

 if (𝑡 identified in HSLs) then

 assign 𝑉𝑀𝑗 based on the type of 𝑡

 else

 Construct 𝑉𝑀()
 end

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

78

 Allocate 𝑉𝑀𝑗 to task 𝑡

 end

end

Algorithm 5: Construct Virtual Machines

Input: Set of tasks 𝐿𝑡 from queues from algorithm 3,

set of hosts 𝐿ℎ

Output: Set of VMs

for (every host ℎ in 𝐿ℎ) do

 𝑢 = resource consumption of ℎ

 if (host resources are accessible) then

 Construct VM

 Modernise HSLs

 end

 else

 Turn on the new host

 Construct VM

 Modernise HSL

 end

end

Algorithm 6: Task Scheduling

Input: Set of tasks 𝐿𝑡 from queues from algorithm 3,

set of VMs 𝑉𝑙
Output: Schedule of tasks for VMs

for (every task 𝑡 in 𝐿𝑡) do

 Sort the tasks into categories such as memory-in-

tensive, CPU-intensive, or both.

 Set every category in a different queue.

 𝑉𝑙 = 𝑉𝑀𝑡𝑦𝑝𝑒𝑠()
 for (each VM 𝑣 in 𝑉𝑙) do

 Compute the same degree of 𝑣 and 𝑡
 if (the required condition is met) then

 schedule 𝑡 to 𝑣

 else

 𝑉𝑛 = 𝐶𝑟𝑒𝑎𝑡𝑒𝑉𝑀()
 schedule 𝑡 to 𝑉𝑛

 modernise HSLs

 end

 end

 end

end

The tasks are noted in the first phase, which

means that suitable VMs for the tasks are located. The

VM types are decided upon and the task types are cat-

egorised appropriately. Let 𝑇𝑙 be a type l task for a set

of tasks 𝑇 that were taken from the historical data.

Equation (32) can be used to calculate the ratio 𝑃.

𝑃 = |
𝑇𝑙

𝑇
| (32)

Let 𝑇𝑖
𝑟 be a candidate task, and let 𝑉𝑗

𝑟 be a VM

with 𝑟 = {1,2,3,4} denoting the CPU, memory, band-

width, and storage capacity of the VM, respectively.

And let 𝑟 = {1,2,3,4 } be the task's requirements.

Equation (33), when applied to task 𝑇𝑖
𝑟 and VM 𝑉𝑗

𝑟,

yields the matching degree.

𝑃(𝑇𝑖
𝑟|𝑉𝑗

𝑟) = {
(𝑉𝑗

𝑟 𝑇𝑖
𝑟⁄)
2
, 𝑖𝑓 𝑇𝑖

𝑟 > 𝑉𝑗
𝑟

𝑉𝑚𝑎𝑥
𝑟 − 𝑉𝑗

𝑟 + 𝑇𝑖
𝑟 𝑉𝑚𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟⁄
,

(33)

where 𝑘 denotes the type of VM and 𝑉𝑚𝑎𝑥
𝑟 =

𝑘𝜖𝑈𝑚𝑎𝑥𝑉𝑘
𝑟 . Equation (34) can be used to determine

the likelihood that a job 𝑇𝑗 is of type 𝑌𝑗.

𝑃(𝑌𝑗|𝑇𝑖) = 𝜋𝑟=1
4 𝑃(𝑇𝑖

𝑟|𝑉𝑗
𝑟) (34)

The suggested algorithm optimises the schedul-

ing problem by utilising MTHHO. It is a difficult and

complex task to map resources to tasks when there are

several objectives. In this case, the dimension of the

search field is calculated by the total amount of tasks

in the process. The search space's size is adjusted to

match the quantity of tasks. The dimensions' values

range from 1 to the amount of VMs, depending on that

number. The plotting of tasks to VMs in this research

is represented by the symbols from earlier research

i.e., 𝑥𝑡
𝑖 = (𝑥𝑡

𝑖 1, 𝑥𝑡
𝑖 2, . . . , 𝑥𝑡

𝑖 𝑗
) , where 𝑥𝑡

𝑖 𝑗
 represents

that, at time 𝑡, the 𝑗𝑡ℎ place of a particle is allocated to

𝑉𝑀𝑖. The size of the search field is represented by the

total amount of tasks within the process. The velocity

is signified by 𝑣𝑡
𝑖 = (𝑣𝑡

𝑖1, 𝑣𝑡
𝑖2, . . . , 𝑣𝑡

𝑖𝑗
), where

𝑣𝑡
𝑖𝑗
 𝑟 epresents the velocity, which represents that, at

time 𝑡, 𝑉𝑀𝑖 transfers to the 𝑗𝑡ℎ place of a particle with

velocity 𝑣. The method finds non-dominated solutions

in subsequent iterations. The archive contains these so-

lutions. We refer to these alternatives as workable so-

lutions. Given that the processes identify non-domi-

nated results, solutions are kept initially, and the rec-

ord is empty. Only when the novel results outweigh the

existing ones are they uploaded to the archive. Using

the fitness function, the solutions' dominance is com-

puted. Lastly, the archive only includes what are

known as non-dominated, or viable, solutions.

4. Result And Discussion

This sector included the outcomes, performance

measures, and comparative analysis of the suggested

technique. The py-sim tool was used to implement the

suggested heuristic-based enhanced Multi-Tactic Har-

ris Hawks Optimization (MTHHO) algorithm on a 64-

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

79

bit Windows 10 Pro computer equipped with an Intel

CoreTM i7-55000U CPU running at 2.40 GHz and 8

GB of RAM. The proposed method assumes that there

will be 16 virtual machines (VMs) and 150 tasks in the

cloud. The following factors led to the selection of the

task and VM.

• Efficiency of Resources: The optimised resource

allocation made possible by the assumption of 150

jobs and 16 resources (VMs) ensures that every task

has enough processing power without wasting any of

it.

• Predictable Performance: A steady task and re-

source count makes it easier to forecast and maintain

the system's performance, which leads to reliable and

strong cloud computing services.

• Simplified Management: Using a preset set of

tasks and resources simplifies system management

and makes it easier to scale resources dynamically in

response to shifting workloads.

To determine which model receives a higher as-

sessment score, tests will be conducted on both the

proposed model and each experimented model. Our

suggested method has been compared to several opti-

misation and hybrid methods to evaluate its possibility.

Several configurations of the models have been tried

to achieve the utmost basic TWT, TFT, cost, energy

efficiency, and resource utilisation. Numerous exami-

nations have been completed with the most comforting

scheduling computations by this effort. To compare

our model with other hybrid algorithms and outper-

form the communication scheduling issue in the cloud,

this research has used enhanced optimisation. As a re-

sult, the suggested model has been improved. In this

examination, a diversity of tasks and virtual machines

were employed. When scheduling, every model

demonstrates its capabilities.

4.1 Metrics and Parameters

The computational metrics listed beneath are uti-

lised in this study to validate the outcomes of the sug-

gested methodologies with other models.

Total Waiting Time, or TWT: This is a criterion

that the user wants. When multiple resources vie for a

single resource, it is the wait time for job execution.

This is the amount of time that is spent waiting for an

errand or cycle to finish its queue.

Total Finish Time, or TFT: This is a criterion that

the user wants. It is the amount of time that passes ac-

cording to plan from the start of an assignment until its

completion. This is the point at which a task reaches

its completion of execution.

Resource utilisation is a desired criterion as stated

by the service provider. A further metric that shows the

amplification of assets employed is resource utilisa-

tion. Although providers must use a certain number of

resources to achieve maximum profit, resource utilisa-

tion should be high in the scheduling framework. One

of the key implications in task scheduling is this pa-

rameter. There will be constant use of the resource. En-

ergy efficiency and throughput are also very important;

nevertheless, resource utilisation is another important

barrier to task execution.

The amount of work that a process completes in

a given amount of time is called throughput. In other

words, throughput is the number of cycles over jobs

finished in a given amount of period. The schedule

ought to aim to increase the number of tasks completed

in each time interval.

Energy efficiency: The amount of power used to

process each client's request is known as energy con-

sumption. A significant reduction in power consump-

tion is required to achieve energy efficiency. This is

one of the most important things to think about while

trying to create an improved environment.

The suggested heuristic-based enhanced

MTHHO method includes an initial evaluation of fit-

ness values within the first population as shown in Fig

6. The best fitness values across 100 iterations are de-

termined by the method using a round-robin technique

based on computing time. The suggested method ar-

rived at the lower fitness values of 33.338s, which de-

creased the makespan, by comparing the best fitness

value with the previous fitness value in each iteration.

Fig 6. The proposed method Output for Best Fit algorithm

In this situation, the number of tasks (Nt) is kept

constant at 500. Nonetheless, there is a 40-step varia-

tion in the number of virtual machines (Nv) between

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

80

40 and 200 VMs. The algorithms' relative perfor-

mances are compared in terms of Makespan in Fig 7.

As the number of machines increases in Fig 7, it is pro-

jected that the Makespan will decrease. For all scenar-

ios from Nt= 40 to 200, the suggested approach

outperforms all other algorithms. Additionally, it is ev-

ident that SJFP consistently has the highest MS values.

The numerical results for Makespan are listed in Table

8 correspondingly.

Table 1. Makespan (MS) comparison of the proposed method ith the prior method
Nt Algorithm

 MCT SJFP LJFP MinMin MaxMin PSO
SJFP-

PSO

LJFP-

PSO

MCT-

PSO

Pro-

posed

40 25.9 29.0 27.6 27.5 25.1 20.4 20.6 22.0 25.9 19.8

80 10.6 16.4 14.3 14.8 11.8 14.9 16.4 13.9 9.7 9.6

120 5.5 10.8 8.5 7.8 6.1 9.3 10.5 8.5 4.9 4.5

160 3.7 8.5 6.2 4.9 4.1 7.1 7.8 6.2 3.7 2.8

200 2.7 5.6 4.5 3.7 3.2 7.2 5.6 4.5 2.7 2.4

Fig 7. Performance evaluation among processes using

makespan (MS).

To contrast the proposed heuristic-based en-

hanced MTHHO method's QoS performance metrics

with those of earlier techniques such as round robin

(RR), PSO, first come first serve (FCFS), genetic sim-

ulated annealing (GASA), and shortest job first (SJF),

HGA (Hybrid Genetic Algorithm).

Table 2. Total outcomes across various approaches.

Parameters SJF FCFS RR PSO GASA HGA Proposed

Total execution time 55.36 54.68 54.31 40.21 36.22 32.57 16.75

Total finish time 101.67 100.18 99.31 80.10 79.4 76.6 03.15

Throughput 0.72 0 .73 0.74 1.01 0.99 1.21 2.4

Resource utilization 0.42 0.42 0.4 0.61 0.63 0.69 0.95

Energy efficiency 0.60 0.62 0.55 0.35 — 0.30 0.20

Fig 8. shows the relationship between all em-

ployed strategies and the TFT and TET, which are

some of the validation criteria used to verify the effi-

cacy of the suggested technique. These are carefully

taken into account when making plans to increase QoS.

The results show that we may attain the highest level

of resource utilisation. Every activity in RR receives

the same amount of time, but as the findings show,

there are several situations in which an average wait-

ing time could be problematic. Similar data was used

to assess the result and examine how the calculation

was presented. Despite its speed advantage, the con-

ventional method has the longest waiting period next

streamlining; the other AI models that were tested

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

81

were likewise effective, but not as effective as the sug-

gested model. Consequently, our suggested model out-

performs all other methods, which is our benchmark.

Furthermore, in comparison to other strategies, the

suggested method offers the shortest execution time,

resulting in a faster task performance. So that users can

avoid task terminations, the waiting time should be as

short as possible. This can determine whether a task is

reasonable and the best method to employ when ar-

ranging a cloud-based scheduling procedure. On the

other hand, while some models have a longer comple-

tion time, our model outperforms others in terms of

finishing period.

Fig 8. TET, and TFT of the scheduling model.

The suggested model with the highest throughput

is the best technique, as demonstrated by the through-

put relationship between each approach and Fig 9. Fol-

lowing a sequence of numerous tasks, efforts were pre-

pared to increase the throughput. One of the most im-

portant factors in demonstrating the existence of a cy-

cle for every time unit will undoubtedly be throughput.

The throughput result demonstrates the effectiveness

of the suggested model. To represent the exhibition,

each assignment was broken into ten parts. The sug-

gested method executes superior to further methods in

this scenario during the split. Despite being linearly

separable, the optimisation strategies demonstrated

their effectiveness. In any case, the suggested model

was the superior one. It may result that the suggested

method outperforms previous methods and meets this

depiction well because the duration is the largest num-

ber of tasks that can be finished per time unit as shown

in Fig 10.

Fig 9. Result of the throughput for different tasks.

Fig 10. Comparison of the throughput

Fig 11. displays how the scheduling strategies' re-

source utilisation relates to each other. Additionally,

the suggested model selects a different request and

makes use of the resources that are available during

runtime. In comparison to alternative methods, the

suggested computation reduces the inactive waiting

time in this way. Similarly, asset utilisation is en-

hanced independently. However, some assets can be-

come excellent when they can be used in combination

with others. The resource is examined under several

different makespan totals. By increasing the amount of

resources used, the approaches maintain their regular

state. The typical waiting time often increases with re-

source size or the number of task increments. It fol-

lows that, in comparison to the other contrasting strat-

egies, the suggested model is the most effective. The

effectiveness of different techniques in comparison to

the suggested technique may be inferred from the Fig

The normal asset utilised by diverse procedures is

practically equivalent, indicating that the number of

available resources has an impact on it.

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

82

Fig 11. Scheduling models vs resource utilization.

Fig 12. Efficiency of energy consumption comparison with the

proposed model.

The efficiency of energy usage is shown in Fig 12.

To fully examine its efficiency, the energy was first

computed in KWh and then converted to a percentage.

The parameter's goal is to lower energy consumption.

The suggested approach beats further methods using a

20% lower amount of energy consumption, as the Fig

illustrates. The suggested model's efficiency was

demonstrated by a comparison with alternative me-

taheuristics. In comparison, the PSO and GA appeared

quite equitable; nonetheless, the model's efficiency in

energy usage is still lacking. Being one of the im-

portant criteria, this one will improve machine perfor-

mance while also promoting environmental sustaina-

bility. The standard conventional procedure that has

been tested is renowned for its sufficiency, however, it

was unable to outperform the presented model.

5. Conclusions

In conclusion, the paper presents a comprehen-

sive approach aimed at optimizing VM allocation in

cloud data centres, addressing challenges related to en-

ergy efficiency and task dependencies. By employing

an enhanced MTHHO algorithm, this approach effec-

tively assigns energy-efficient VMs considering job

dependencies and task execution times. The algorithm

incorporates various improvements, including en-

hanced energy updating methods, elite opposition-

based learning for flexibility, Sobol sequences for pop-

ulation initialization, and the introduction of Gaussian

walk learning to prevent the process from converging

to local optima. The results demonstrate significant en-

hancements in Quality of Service (QoS) performances,

showcasing reduced makespan, energy consumption

of 0.20, throughput of 2.4, and execution time of 16.75,

with resource allocation improvements ranging from

1% to 98% compared to prior methods of cloud com-

puting. Overall, the proposed heuristic-based MTHHO

method efficiently balances loads and allocates re-

sources, highlighting its potential for enhancing cloud

computing efficiency and performance.

Reference

Abd Elaziz, M., Xiong, S., Jayasena, K. P. N., & Li, L.

(2019). Task scheduling in cloud computing based

on hybrid moth search algorithm and differential

evolution. Knowledge-Based Systems, 169, 39-52.

Abdullahi, M., & Ngadi, M. A. (2016). Symbiotic

organism search optimization-based task

scheduling in a cloud computing

environment. Future Generation Computer

Systems, 56, 640-650.

Abdullahi, M., Ngadi, M. A., Dishing, S. I., &

Abdulhamid, S. I. M. (2023). Adaptive symbiotic

organisms search for constrained task scheduling

in cloud computing. Journal of ambient

intelligence and humanized computing, 14(7),

8839-8850.

Adhikari, M., Nandy, S., & Amgoth, T. (2019). Meta

heuristic-based task deployment mechanism for

load balancing in IaaS cloud. Journal of Network

and Computer Applications, 128, 64-77.

Agarwal, M., & Srivastava, G. M. S. (2021).

Opposition-based learning inspired particle swarm

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

83

optimization (OPSO) scheme for task scheduling

problems in cloud computing. Journal of Ambient

Intelligence and Humanized Computing, 12(10),

9855-9875.

Alam, T. (2021). Cloud-based IoT applications and

their roles in smart cities. Smart Cities, 4(3), 1196-

1219.

Alsaidy, S. A., Abbood, A. D., & Sahib, M. A. (2022).

Heuristic initialization of PSO task scheduling

algorithm in cloud computing. Journal of King

Saud University-Computer and Information

Sciences, 34(6), 2370-2382.

Chaudhary, D., & Kumar, B. (2018). Cloudy GSA for

load scheduling in cloud computing. Applied Soft

Computing, 71, 861-871.

Cui, D., Peng, Z., Li, Q., He, J., Zheng, L., & Yuan, Y.

(2021). A survey on cloud workflow collaborative

adaptive scheduling. In Advances in Computer,

Communication and Computational Sciences:

Proceedings of IC4S 2019 (pp. 121-129). Springer

Singapore.

Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S.,

Lydia, E. L., & Shankar, K. (2020). Hybridization

of firefly and improved multi-objective particle

swarm optimization algorithm for energy efficient

load balancing in cloud computing

environments. Journal of Parallel and Distributed

Computing, 142, 36-45.

Fanian, F., Bardsiri, V. K., & Shokouhifar, M. (2018).

A new task scheduling algorithm using Firefly and

simulated annealing algorithms in cloud

computing. International Journal of Advanced

Computer Science and Applications, 9(2).

Gawali, M. B., & Shinde, S. K. (2018). Task

scheduling and resource allocation in cloud

computing using a heuristic approach. Journal of

Cloud Computing, 7(1), 1-16.

Golchi, M. M., Saraeian, S., & Heydari, M. (2019). A

hybrid of firefly and improved particle swarm

optimization algorithms for load balancing in

cloud environments: Performance

evaluation. Computer Networks, 162, 106860.

Jena, U. K., Das, P. K., & Kabat, M. R. (2022).

Hybridization of a meta-heuristic algorithm for

load balancing in a cloud computing

environment. Journal of King Saud University-

Computer and Information Sciences, 34(6), 2332-

2342.

Katal, A., Dahiya, S., & Choudhury, T. (2023). Energy

efficiency in cloud computing data centres: a

survey on software technologies. Cluster

Computing, 26(3), 1845-1875.

Keshanchi, B., Souri, A., & Navimipour, N. J. (2017).

An improved genetic algorithm for task scheduling

in the cloud environments using the priority queues:

formal verification, simulation, and statistical

testing. Journal of Systems and Software, 124, 1-

21.

Konjaang, J. K., & Xu, L. (2021). Meta-heuristic

approaches for effective scheduling in

infrastructure as a service cloud: A systematic

review. Journal of Network and Systems

Management, 29, 1-57.

Kumar, M., & Sharma, S. C. (2018). PSO-COGENT:

Cost and energy-efficient scheduling in a cloud

environment with deadline

constraints. Sustainable Computing: Informatics

and Systems, 19, 147-164.

Mahato, D. P., Singh, R. S., Tripathi, A. K., & Maurya,

A. K. (2017). On scheduling transactions in a grid

processing system considering load through ant

colony optimization. Applied Soft Computing, 61,

875-891.

Mansouri, N., Zade, B. M. H., & Javidi, M. M. (2019).

Hybrid task scheduling strategy for cloud

computing by modified particle swarm

optimization and fuzzy theory. Computers &

Industrial Engineering, 130, 597-633.

Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load

balancing in cloud computing: a big

picture. Journal of King Saud University-

Computer and Information Sciences, 32(2), 149-

158.

Ramamoorthy, S., Ravikumar, G., Saravana Balaji, B.,

Balakrishnan, S., & Venkatachalam, K. (2021).

MCAMO: multi-constraint aware multi-objective

DOI: 10.6977/IJoSI.202412_8(4).0005

S. Antony, Sujatha S R. /Int. J. Systematic Innovation, 8(4), 67-84 (2024)

84

resource scheduling optimization technique for

cloud infrastructure services. Journal of Ambient

Intelligence and Humanized Computing, 12, 5909-

5916.

Strumberger, I., Bacanin, N., Tuba, M., & Tuba, E.

(2019). Resource scheduling in cloud computing

based on a hybridized whale optimization

algorithm. Applied Sciences, 9(22), 4893.

Wei, X. (2020). Task scheduling optimization strategy

using improved ant colony optimization algorithm

in cloud computing. Journal of Ambient

Intelligence and Humanized Computing, 1-12.

Yadav, M., & Mishra, A. (2023). An enhanced ordinal

optimization with lower scheduling overhead

based novel approach for task scheduling in a

cloud computing environment. Journal of Cloud

Computing, 12(1), 8.

