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Abstract 

Prostate cancer (PCa) is currently the most frequently diagnosed cancer in men in industrialized nations and ranks as 

the second leading cause of male cancer-related deaths globally, early detection is crucial. Originating in the walnut-

shaped gland beneath the bladder, PCa poses a significant risk when not identified in its early stages. The diagnostic 

process, requiring expertise from radiologists, pathologists, and physicians, is time-consuming and introduces varia-

bility, potentially leading to delayed or incorrect diagnoses. This underscores the need for efficient and reliable diag-

nostic tools in addressing the escalating challenge of PCa diagnosis. This study addresses the critical challenge of PCa 

diagnosis by employing a comprehensive approach involving feature selection methods and model performance eval-

uation. Utilizing a PCa dataset from Kaggle, consisting of 100 patient observations with eight independent features 

and a binary diagnosis result, the study explores the nuanced nature of feature relevance in PCa classification. Com-

parative analyses of Principal Component Analysis (PCA) and ReliefF feature selection methods reveal the limitations 

of PCA's emphasis on a dominant feature, while ReliefF, incorporating a distributed set of features, demonstrates 

improved model accuracy and stability. The Random Forest (RF) model, selected through meticulous parameter tuning, 

achieves an impressive 95% accuracy by leveraging a substantial number of estimators, limited tree depth, and bal-

anced sample splitting. The findings underscore the crucial interplay between feature selection methods and model 

parameters in optimizing the accuracy and reliability of PCa classification models. Given the anticipated rise in PCa 

incidence, this research contributes valuable insights for enhancing diagnostic efficiency and addressing the challenges 

posed by traditional diagnostic procedures. 
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1. Introduction 

At present, prostate cancer (PCa) stands as the most 

commonly diagnosed malignancy among men in highly 

industrialized nations and ranks as the second primary 

cause of male cancer-related fatalities globally. As the 

population continues to expand and age, it is anticipated 

that the global incidence of PCa will rise, reaching 

nearly 2.4 million new cases annually by the year 2040 

(De Vos et al., 2023). PCa originates in the compact, 

walnut-shaped gland located beneath the bladder and in 

front of the rectum. When not identified in its early 

stages, PCa can pose a considerable risk, leading to a 

notable fatality rate. According to a 20-year actuarial cu-

mulative estimate, the likelihood of death from prostate 

cancer is significant (ACS, 2023). Furthermore, the clin-

ical procedures for diagnosing prostate cancer (PCa) ne-

cessitate considerable time and expertise from radiolo-

gists, pathologists, and physicians. They meticulously 

assess and assign a grade or stage before considering 

treatment options based on factors such as the cancer 

stage, severity, and other relevant considerations. 

Unfortunately, the routine diagnostic process relies on 

human intervention, introducing variability in outcomes 

that may result in delayed or incorrect diagnoses 

(Gravade et al., 2023). 

Additionally, the diagnosis of PCa continues to be 

challenging because each cascade element is not fully 

replicated in the metastasis of prostate cancer. Tradi-

tional methods such as the digital rectal test (DRE), 

prostate-specific antigen (PSA) blood test, and ultraso-

nography are employed for PCa detection. However, 

these methods exhibit low sensitivity and specificity, 

falling short of meeting medical standards (Naeem et al., 

2023). 

On the other hand, machine learning (ML) algo-

rithms have proven effective in identifying gene bi-

omarkers associated with PCa. Researchers are drawn to 

this technology because of its ability to uncover hidden 

patterns in the data and extract relationships between 

features using a set of mathematical rules and statistical 

assumptions (Chen et al., 2022).  
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In this paper we present a methodology for the PCa 

diagnosis system based on ML classifier, the aim of this 

study is to use and compare various supervised machine 

learning algorithms like Multilayer Perceptron (MLP), 

Support Vector Machines (SVM), K-Nearest Neighbor 

(KNN), Decision Tree (DT), Naïve Bayes (NB) and 

Random Forest (RF). The remaining sections of the pa-

per are organized as follows: Section 2 introduces the 

related works in literature. In Section 3, the materials 

and methods are presented. Section 4 discusses the ex-

perimental results and findings. Finally, Section 4 pro-

vides the conclusion for the paper. 

2. Literature review  

The examination of ML algorithms in the context 

of predicting PCa represents a central theme in current 

medical research. With a primary objective of improv-

ing the survival rates of individuals diagnosed with PCa, 

the development of robust prediction models holds par-

amount importance, for example in (Molla et al., 2023) 

the exploration is undertaken by utilizing a variety of 

ML techniques, namely SVM, KNN, NB, RF, and Lo-

gistic Regression (LR) algorithms. The objective is to 

predict PCa outcomes with greater precision. Notably, 

among the diverse ML techniques investigated, LR 

emerges as particularly promising, showcasing a note-

worthy 86.21% accuracy in prediction results. These 

findings underscore the potential applicability of LR as 

a reliable tool for PCa prediction. 

On the other hand, in (Laabidi, & Aissaoui, 2020) 

they specific focus on the study involves predicting dia-

betes and PCa, utilizing eight distinct machine learning 

architectures. The experiments conducted reveal prom-

ising results, with an overall accuracy of 81.3% for PCa 

diagnosis. Notably, the Recurrent Neural Network 

(RNN) emerged as the top-performing model, showcas-

ing superior accuracy compared to other architectures. 

However, LR demonstrated noteworthy results, particu-

larly when applied to scaled features. 

Moreover, the methodology built in (Araujo et al., 

2023) upon a comprehensive analysis of various clinical 

variables extracted from patients' medical records, in-

cluding age, race, diabetes mellitus, alcoholism, smok-

ing, systemic arterial hypertension, digital rectal exami-

nation, and total prostate-specific antigen levels. To val-

idate the efficacy of the method, machine learning algo-

rithms such as SVM, NB, KNN, DT, and MLP were 

employed. These algorithms were utilized to predict the 

likelihood of PCa presence or absence based on the gath-

ered clinical data. The evaluation of the method's perfor-

mance employed an accuracy metric, with the Linear 

SVM model exhibiting the highest accuracy at 86.8%. 

3. Materials and methods 

In this section, we present a thorough overview of 

the methodology utilized, feature selection techniques, 

covering machine learning algorithms, and a detailed 

description of the dataset. 

3.1. Feature selection methods 

Principal Component Analysis (PCA): It is a pro-

cedure leveraging statistical methods to derive features 

from a dataset. This involves determining the eigenval-

ues of various features within the dataset and projecting 

them into a lower-dimensional space. The derived fea-

tures are commonly known as principal components. 

Despite being sensitive to missing or outlier values, 

PCA aims to preserve minimal dimensionality while re-

taining valuable or essential information (Alhanaya et 

al., 2023). 

ReliefF: The fundamental concept behind the Re-

lief algorithm is to assess features by their effectiveness 

in distinguishing instances that are in close proximity to 

each other. For every selected instance, the algorithm 

identifies its two nearest neighbors: one belonging to the 

same class, termed the nearest hit, and the other from a 

different class, referred to as the nearest miss. This algo-

rithm assigns higher weights to features that effectively 

differentiate instances from diverse classes. Similarly, 

the ReliefF algorithm is developed on the same underly-

ing rationale (Yong & Gao, 2023). 

3.2. Machine learning algorithms 

Multilayer Perceptron (MLP): It is a soft compu-

ting tools for constructing reliable models to address di-

verse and intricate engineering problems, mimicking the 

structure of biological neural networks. The architecture 

mainly consists of three components: an input layer con-

taining features, hidden layers with synapses, a sum-

ming point, and an activation function, and an output 

layer displaying results. This network configuration is 
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commonly referred to as MLP, employing multiple per-

ceptron’s or neural network units to compute specific in-

put data. Each layer, depending on the input elements 

from preceding layers, features a definite number of 

nodes or neurons interconnected by synapses or weights 

converging at the summation point, resulting in a modi-

fied signal post-multiplication by varying weights. The 

summation point combines input signals linearly, poten-

tially yielding a substantial output amplitude. To con-

strain the signal amplitude from the summation point, an 

activation function is employed (Deka et al., 2023).  

Support Vector Machines (SVM): Is a supervised 

learning algorithm suitable for classification and regres-

sion. In a classification scenario, it separates labeled 

training data into positive and negative classes within an 

n-dimensional space. The SVM's objective is to identify 

a hyperplane that maximizes the distance between the 

plane and the nearest data points, known as the maximal 

margin hyperplane. The hyperplane's parameters, such 

as the n-dimensional weight vector and bias value, are 

determined during the learning phase. If the data are not 

linearly separable, the algorithm allows for some mis-

classification using slack variables and an error penalty 

parameter. The optimal hyperplane is defined by solving 

a convex quadratic optimization problem. In a visual 

representation, support vectors represent the nearest data 

points to the hyperplane, and the distance between them 

constitutes the margin. This approach is effective in ad-

dressing diverse classification challenges in engineering 

problems (Araste et al., 2023). 

K-Nearest Neighbor (KNN): a supervised learn-

ing method addressing grouping problems, stands out as 

one of the most commonly employed classification al-

gorithms in literature. Its classification process relies on 

known class data, making it an example-based algorithm 

learning from the training set. Despite its simplicity, 

KNN consistently delivers competitive results and can 

even outperform more complex learning algorithms in 

certain cases, especially when dealing with a smaller 

number of classes. This method proves to be a simpler 

yet effective machine learning approach, particularly in 

situations with multiple categorized data points. KNN 

finds applicability not only in classification but also in 

solving regression problems, especially when independ-

ent variables are quantitative, and the classification pro-

cess depends on the distances between observations. 

Although possessing a straightforward structure, KNN 

does entail a high computational cost (Erdem & 

Bozkurt., 2021). 

Decision Tree (DT): Is a formalism used to ex-

press mappings, comprising tests or attribute nodes con-

nected to two or more subtrees and leaf nodes. Decision 

nodes or leaf nodes are labeled with a class, representing 

the decision. A test node calculates an outcome based on 

the attribute values of an instance, with each possible 

outcome associated with one of the subtrees. Classifica-

tion of an instance involves starting at the root node of 

the tree. If this node is a test, the outcome for the in-

stance is determined, and the process continues using the 

appropriate subtree. When a leaf is encountered, its label 

provides the predicted class for the instance (Podgorelec, 

2002). 

Naïve Bayes (NB): Serves as a straightforward 

probability classifier, determining probabilities by tally-

ing the frequency and combinations of values within a 

given dataset. Employing Bayes's theorem, the algo-

rithm operates under the assumption of independence 

among all variables, given the class variable. While this 

conditional independence assumption may be deemed 

"naive" and is rarely valid in real-world applications, the 

algorithm demonstrates a rapid learning capability 

across diverse controlled classification problems. 

Bayes's theorem, a mathematical formula named after 

the 18th-century British mathematician Thomas Bayes, 

is utilized to calculate conditional probability (Saritas & 

Yasar, 2019). 

Radom Forests (RF): Is a combination of classifi-

ers where each classifier contributes a single vote for as-

signing the most frequent class to the input vector. The 

majority vote in RF representing the class prediction of 

the random forest tree. The amalgamation of many clas-

sifiers gives RF distinct characteristics, setting it apart 

from traditional DT. Therefore, RF should be perceived 

as a novel concept in classifiers. RF enhances tree diver-

sity by growing them from different training data sub-

sets, which are created through bagging or bootstrap ag-

gregating. Bootstrap aggregating involves randomly 

resampling the original dataset with replacement, thus 

generating subsets with varied data. RF serves as an en-

semble classification algorithm that utilizes trees as base 

classifiers (Rodriguez-Galiano., et al 2012). 

3.3. Dataset description 

To assess the performance of the methods evalu-

ated in this study, a prostate cancer dataset was em-

ployed in the initial phase of the design flow. The dataset, 

accessible through the Kaggle platform (Sajid, 2018), 
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comprises observations from 100 patients (62 records 

for PCa patients and 38 records for non-PCa patients). It 

includes eight independent features (radius, texture, area, 

perimeter, compactness, smoothness, fractal dimension, 

symmetry) and one dependent variable (diagnosis 

result). The label is represented by the diagnosis results, 

categorized by two values “B” for benign tumors and 

“M” for malignant tumors. The detailed information 

about the data is presented in Table 1

Table 1. Prostate cancer dataset feature descriptions. 

Feature Description 

Radius 
Refers to the average distance from the center to the perimeter of the cancer cell. This feature 

is often used to characterize the size of the cell. 

Texture 
Describes the variation in gray-scale intensity of the cancer cell, providing information about 

the homogeneity of the cell's internal structure. 

Perimeter 
Represents the total length of the boundary of the cancer cell, offering insights into the shape 

and contour. 

Area Denotes the total area covered by the cancer cell, contributing to the overall size assessment. 

Smoothness 
Describes the local variation in radius lengths, giving an indication of how smooth or irregular 

the cancer cell surface is. 

Compactness 
Reflects the compactness of the cancer cell shape, derived from the ratio of perimeter^2 to 

area. 

Symmetry Represents the symmetry of the cancer cell shape, providing information about its regularity. 

Fractal dimen-

sion 

Describes the complexity of the cancer cell shape at different scales, offering insights into the 

irregularity and intricacy of the cell structure. 

 

4. Results and discussion 

In this section, we unveil the outcomes derived 

from the applied methodology. We start with the results 

of the feature and model selection stage; wherein numer-

ous experiments were conducted by training each model 

under different feature selection configurations (None, 

PCA and ReliefF). The optimal model from this stage 

was then chosen for subsequent parameter tuning. 

 
Figure 1. Feature relevance, PCA method (left) and ReliefF 

(right). 

For the PCA method, the feature relevance score 

for “area” is the highest, close to 1.0, while the other 

features have near to zero scores. This suggests that 

“area” is the dominant feature that explains most of the 

variance in the data, and the other features are redundant 

or irrelevant. However, this does not mean that “area” is 

the best feature for classification or regression, as it may 

not capture the differences between the classes. 

In the other way, the ReliefF method, the feature 

relevance scores are more distributed among the features. 

The feature “perimeter” has the highest score, but it is 

much lower than in the PCA method. This indicates that 

“perimeter” is still a relevant feature for classification, 

but it is not the only one. Other features, such as “area” 

and “compactness”, also have notable scores, which 

means that they are also useful for distinguishing be-

tween the classes. The remaining features have rela-

tively low relevance scores, which means that they are 

less important or redundant. 
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Figure 2. Models’ performance for None feature selection. 

 

The figure reveals that among the models, MLP 

has the widest range of accuracy (0.68±0.11), which 

suggests that it is unstable and sensitive to the data. 

SVM, DT and NB have more consistent accuracy, but 

they are still below 0.8, 0.79±0.08, 0.76±0.1 and 

0.78±0.08 respectively. NN, and RF have similar me-

dian accuracy and variability, 0.81±0.08 and 0.82±0.08 

respectively. These results imply that as some features 

may be irrelevant or redundant for the classification task. 

 

Figure 3. Models’ performance for PCA feature selection. 

 

The figure shows the PCA feature selection based 

on the “area” as unique feature. Equal to none feature 

selection, MLP has the widest range of accuracy 

(0.74±0.09), similar to DT and RF with 0.76±0.07 each. 

NN has the highest median accuracy 0.83±0.07 near are 

SVM and NB with 0.82±0.07 each. This implies that 

PCA feature selection may not be the best choice for this 

classification task, as it only considers the “area” feature 

and ignores the other features that may be relevant or 

informative. 

Figure 4. Models’ performance for ReliefF feature selection.
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Figure 5. RF parameter tunning values.

ReliefF feature selection is based on three fea-

tures: “perimeter,” “area,” and “compactness”. Here 

the results improve for four of the six models (NN, DT, 

NB, and RF) with 0.84±0.07, 0.82±0.08, 0.83±0.08 

and 0.85±0.08 respectively, being RF the best model 

in all experiments, while MLP and SVM give lower 

scores 0.65±0.15 and 0.81±0.08. This implies that Re-

liefF feature selection may be beneficial for improving 

the accuracy and stability of the models, as it considers 

the “perimeter”, “area” and “compactness” that are 

relevant and good predictors for prostate cancer clas-

sification tasks. 

Finally, we opted for the RF model during the pa-

rameter tuning phase. For this stage, we employed a 

parameter grid encompassing "number of estimators" 

(50, 100, 200), "max depth" (None, 10, 20), "minimum 

samples split" (2, 5, 10), and "minimum samples leaf" 

(1, 2, 4). The optimal model was determined to have 

the following parameter values: 200 for the number of 

estimators, 10 for max depth, 5 for minimum samples 

split, and 1 for minimum samples leaf (Figure 5). This 

refined model achieved an impressive accuracy score 

of 95% for diagnosing PCa. 

The noteworthy accuracy of this model can be at-

tributed to the combination of a substantial number of 

estimators (200), an appropriately limited tree depth 

(10), and a balanced approach to splitting samples. 

The minimal leaf samples (1) further contribute to the 

model's precision, ensuring that each leaf node cap-

tures a sufficient amount of information without over-

fitting the data. This comprehensive parameter selec-

tion enables the Random Forest model to robustly dis-

cern patterns in the dataset, leading to its high accu-

racy in PCa diagnosis. 

5. Conclusion 

In conclusion, the comparative analysis of feature 

selection methods and subsequent model performance 

evaluation highlights the nuanced nature of feature rel-

evance in PCa classification. PCA, with its emphasis 

on the dominant "area" feature, may oversimplify the 

task by neglecting other informative features, poten-

tially compromising classification accuracy. In con-

trast, ReliefF, incorporating "perimeter," "area," and 

"compactness," demonstrates improved model accu-

racy and stability, emphasizing the significance of a 

more distributed feature selection approach. The RF 

model, chosen through parameter tuning, achieves an 

impressive 95% accuracy by effectively leveraging a 

substantial number of estimators, limited tree depth, 

and balanced sample splitting. This underscores the 

importance of a meticulous parameter selection pro-

cess, contributing to the model's robust ability to dis-

cern meaningful patterns in the PCa dataset. Overall, 

the study underscores the critical interplay between 

feature selection methods and model parameters in 
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optimizing the accuracy and reliability of PCa classi-

fication models. 
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